A. Properties of Matrix Addition:

Theorem 1.1 Let A, B, and C be $m \times n$ matrices. Then the following properties hold:

- a) A + B = B + A (commutativity of matrix addition)
- b) A + (B + C) = (A + B) + C (associativity of matrix addition)
- c) There is a unique matrix O such that A + O = A for any $m \times n$ matrix A. The matrix O is called the **zero matrix** and serves as the *additive identity* for the set of $m \times n$ matrices. Note that O is the $m \times n$ matrix with each entry equal to zero.
- d) For each $m \times n$ matrix A there is a unique $m \times n$ matrix D such that A + D = O. We usually denote D as -A so we have A + (-A) = O. We call -A and *additive inverse* of the matrix A. Note that -A = (-1)A.

Proof: We will prove part (b). Parts (a) and (c) are proved in your textbook, and part (d) can be proved using similar methods.

Let $A = [a_{ij}]$, $B = [b_{ij}]$, and $C = [c_{ij}]$ be $m \times n$ matrices. Let $A + (B + C) = D = [d_{ij}]$ and $(A + B) + C = E = [e_{ij}]$. Notice that for each (i, j), $d_{ij} = a_{ij} + (b_{ij} + c_{ij}) = (a_{ij} + b_{ij}) + c_{ij} = e_{ij}$ (using the associativity of addition of real numbers). Thus D = E. \Box

Example: Suppose $A = \begin{bmatrix} 1 & -2 \\ x & \frac{1}{3} \end{bmatrix}$ and $B = \begin{bmatrix} y & z \\ \frac{1}{4} & w \end{bmatrix}$ with A + B = O. Find w, x, y, z.

B. Properties of Matrix Multiplication:

Theorem 1.2 Let A, B, and C be matrices of appropriate sizes. Then the following properties hold:

- a) A(BC) = (AB)C (associativity of matrix multiplication)
- b) (A+B)C = AC + BC (the right distributive property)
- c) C(A+B) = CA + CB (the left distributive property)

Proof: We will prove part (a). Parts (b) and (c) are left as homework exercises.

Let $A = [a_{ij}]$ be an $m \times n$ matrix, $B = [b_{ij}]$ an $n \times p$ matrix, and $C = [c_{ij}]$ be a $p \times q$ matrix. Suppose $AB = D = [d_{ij}]$ and $BC = E = [e_{ij}]$. Further suppose that $(AB)C = DC = F = [f_{ij}]$ and $A(BC) = AE = G = [g_{ij}]$.

Notice that for each (i, j), $d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. Similarly, $e_{ij} = \sum_{l=1}^{p} b_{il} c_{lj}$.

Then
$$f_{ij} = \sum_{l=1}^{p} d_{il}c_{lj} = \sum_{l=1}^{p} \left(\sum_{k=1}^{n} a_{ik}b_{kj}\right)c_{lj} = \sum_{l=1}^{p} \left(a_{i1}b_{ll} + a_{i2}b_{2l} + \dots + a_{in}b_{nl}\right)c_{lj} = a_{i1}\sum_{l=1}^{p} b_{1l}c_{lj} + a_{i2}\sum_{l=1}^{p} b_{2l}c_{lj} + \dots + a_{in}\sum_{l=1}^{p} b_{nl}c_{lj} = \sum_{k=1}^{n} a_{ik}\left(\sum_{l=1}^{p} b_{il}c_{lj}\right) = \sum_{k=1}^{n} a_{ik}e_{kj} = g_{ij}.$$
 Hence $F = G$. \Box

C. Properties of Scalar Multiplication

Theorem 1.3 Let r, s be real numbers and A and B matrices of appropriate sizes. Then the following properties hold:

- a) r(sA) = (rs)A
- b) (r+s)A = rA + sA
- c) r(A+B) = rA + rB
- d) A(rB) = r(AB) = (rA)B

Proof: We will prove part (a). Parts (b), (c) and (d) are left as homework exercises.

Let $A = [a_{ij}]$ and suppose $r, s \in \mathbb{R}$. Suppose $r(sA) = B = [b_{ij}]$ and $(rs)A = C = [c_{ij}]$. Then for each $(i, j), b_{ij} = r(s \cdot a_{ij}) = (rs)a_{ij} = c_{ij}$ (using the associativity of multiplication of real numbers). Thus B = C. \Box

Examples:

D. Properties of the Transpose

Theorem 1.4 Let r be a real number and A and B matrices of appropriate sizes. Then the following properties hold:

- a) $\left(A^T\right)^T = A$
- b) $(A+B)^T = A^T + B^T$
- c) $(AB)^T = B^T A^T$
- d) $(rA)^T = rA^T$

Proof: We will prove part (b). Part (c) is proved in your textbook, while Parts (a) and (d) are left as homework exercises.

Let $A = [a_{ij}]$ and $B = [b_{ij}]$, and suppose $(A + B)^T = C = [c_{ij}]$, while $A^T + B^T = D = [d_{ij}]$. Notice that, by definition of the transpose of a matrix, c_{ij} is the (j, i) entry of A + B, so $c_{ij} = a_{ji} + b_{ji}$. Moreover, a_{ji} is the (i, j) entry of A^T . Similarly, b_{ji} is the (i, j) entry of B^T . Hence $a_{ji} + b_{ji} = d_{ij}$. Thus $c_{ij} = d_{ij}$. Therefore C = D. \Box .

Examples: