A. Properties of Matrix Addition:

Theorem 1.1 Let A, B, and C be $m \times n$ matrices. Then the following properties hold:

- a) $A + B = B + A$ (commutativity of matrix addition)
- b) $A + (B + C) = (A + B) + C$ (associativity of matrix addition)
- c) There is a unique matrix O such that $A + O = A$ for any $m \times n$ matrix A. The matrix O is called the **zero matrix** and serves as the *additive identity* for the set of $m \times n$ matrices. Note that O is the $m \times n$ matrix with each entry equal to zero.
- d) For each $m \times n$ matrix A there is a unique $m \times n$ matrix D such that $A + D = O$. We usually denote D as $-A$ so we have $A + (-A) = O$. We call $-A$ and *additive inverse* of the matrix A. Note that $-A = (-1)A$.

Proof: We will prove part (b). Parts (a) and (c) are proved in your textbook, and part (d) can be proved using similar methods.

Let $A = [a_{ij}], B = [b_{ij}],$ and $C = [c_{ij}]$ be $m \times n$ matrices. Let $A + (B + C) = D = [d_{ij}]$ and $(A + B) + C = E = [e_{ij}]$. Notice that for each (i, j) , $d_{ij} = a_{ij} + (b_{ij} + c_{ij}) = (a_{ij} + b_{ij}) + c_{ij} = e_{ij}$ (using the associativity of addition of real numbers). Thus D = $E.$ $\;\Box$

Example: Suppose $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ $x \frac{1}{3}$ and $B = \begin{bmatrix} y & z \\ \frac{1}{4} & w \end{bmatrix}$ with $A + B = O$. Find w, x, y, z .

B. Properties of Matrix Multiplication:

Theorem 1.2 Let A , B , and C be matrices of appropriate sizes. Then the following properties hold:

- a) $A(BC) = (AB)C$ (associativity of matrix multipliction)
- b) $(A + B)C = AC + BC$ (the right distributive property)
- c) $C(A + B) = CA + CB$ (the left distributive property)

Proof: We will prove part (a). Parts (b) and (c) are left as homework exercises.

Let $A = [a_{ij}]$ be an $m \times n$ matrix, $B = [b_{ij}]$ an $n \times p$ matrix, and $C = [c_{ij}]$ be a $p \times q$ matrix. Suppose $AB = D = [d_{ij}]$ and $BC = E = [e_{ij}]$. Further suppose that $(AB)C = DC = F = [f_{ij}]$ and $A(BC) = AE = G = [g_{ij}]$.

Notice that for each (i, j) , $d_{ij} = \sum_{i=1}^{n}$ $k=1$ $a_{ik}b_{kj}$. Similarly, $e_{ij} = \sum_{i=1}^{p} a_{ik}b_{kj}$. $l=1$ $b_{il}c_{lj}$.

Then
$$
f_{ij} = \sum_{l=1}^{p} d_{il}c_{lj} = \sum_{l=1}^{p} \left(\sum_{k=1}^{n} a_{ik}b_{kj} \right) c_{lj} = \sum_{l=1}^{p} (a_{i1}b_{ll} + a_{i2}b_{2l} + \dots + a_{in}b_{nl}) c_{lj} = a_{i1} \sum_{l=1}^{p} b_{1l}c_{lj} + a_{i2} \sum_{l=1}^{p} b_{2l}c_{lj} + \dots + a_{in} \sum_{l=1}^{p} b_{nl}c_{lj} = \sum_{k=1}^{n} a_{ik} \left(\sum_{l=1}^{p} b_{il}c_{lj} \right) = \sum_{k=1}^{n} a_{ik}e_{kj} = g_{ij}
$$
. Hence $F = G$. \Box

C. Properties of Scalar Multiplication

Theorem 1.3 Let r, s be real numbers and A and B matrices of appropriate sizes. Then the following properties hold:

- a) $r(sA) = (rs)A$
- b) $(r + s)A = rA + sA$
- c) $r(A + B) = rA + rB$
- d) $A(rB) = r(AB) = (rA)B$

Proof: We will prove part (a). Parts (b), (c) and (d) are left as homework exercises.

Let $A = [a_{ij}]$ and suppose $r, s \in \mathbb{R}$. Suppose $r(sA) = B = [b_{ij}]$ and $(rs)A = C = [c_{ij}]$. Then for each (i, j) , $b_{ij} = r(s \cdot a_{ij})$ $(rs)a_{ij} = c_{ij}$ (using the associativity of multiplication of real numbers). Thus $B = C$. \Box

Examples:

D. Properties of the Transpose

Theorem 1.4 Let r be a real number and A and B matrices of appropriate sizes. Then the following properties hold:

- a) $(A^T)^T = A$
- b) $(A + B)^{T} = A^{T} + B^{T}$
- c) $(AB)^T = B^T A^T$
- d) $(rA)^T = rA^T$

Proof: We will prove part (b). Part (c) is proved in your textbook, while Parts (a) and (d) are left as homework exercises.

Let $A = [a_{ij}]$ and $B = [b_{ij}]$, and suppose $(A + B)^{T} = C = [c_{ij}]$, while $A^{T} + B^{T} = D = [d_{ij}]$. Notice that, by definition of the transpose of a matrix, c_{ij} is the (j, i) entry of $A + B$, so $c_{ij} = a_{ji} + b_{ji}$. Moreover, a_{ji} is the (i, j) entry of A^T . Similarly, b_{ji} is the (i, j) entry of B^T . Hence $a_{ji} + b_{ji} = d_{ij}$. Thus $c_{ij} = d_{ij}$. Therefore $C = D$. \Box .

Examples: