Definition: Let V be a vector space and W a non-empty subset of V. If W is a vector space with respect to the operations in V , then W is called a **subspace** of V .

Theorem 4.3 Let V be a vector space with operations \oplus and \odot and let W be a non-empty subset of V. Then W is a subspace of V if and only if the following conditions hold: (a) If \vec{u} and \vec{v} are any elements in W, then $\vec{u} \oplus \vec{v}$ is in W.

(b) If \vec{u} is any element in W and c is any real number, then $c \odot \vec{u}$ is in W (so we say that W is closed under the operation \odot).

Proof:

Note: We say that (a) and (b) above are **closure properties** for \oplus and \odot respectively.

Examples:

- 1. Let V be any vector space. Since V itself is a subset of V satisfying properties (a) and (b), then V is a subspace of itself.
- 2. Let V be any vector space and let $W = \{\vec{0}\}\$. Since $\vec{0} \oplus \vec{0} = \vec{0}$ and $c \odot \vec{0} = \vec{0}$ for any real number c, then W is a subspace of V. We call $\{\vec{0}\}\$ the zero subspace of V.
- 3. Last section, we showed that P, the set of all polynomials is a vector space and that P_n , the set of all polynomials of degree $\leq n$ for some fixed n is also a vector space (using the operations of function addition and function scalar multiplication). Since P_n is a subset of P, then P_n is a subspace of P for any n. Also, P_n is a subspace of P_{n+1} (in fact, P_k is a subspace of P_ℓ whenever $k \leq \ell$.
- 4. If we let T be the set of all polynomials of degree exactly 2, then T is not a subspace of P. The set T is a subset of P. but, as we showed before, T does not satisfy the closure property for function addition.
- 5. Consider the following subsets of \mathbb{R}_3 :
	- $W_1 = \{ \begin{bmatrix} a & b & c \end{bmatrix} : a \geq 0, b \geq 0, c \geq 0 \}$
	- $W_2 = \{ \begin{bmatrix} a & b & c \end{bmatrix} : a = 0 \}$
	- $W_3 = \{ [a \ b \ c \] : b = c \}$
	- $W_4 = \{ \begin{bmatrix} a & b & c \end{bmatrix} : a b = c \}$

Which of these subsets are subspaces of \mathbb{R}_3 ?

Definition: Let $\vec{v_1}, \vec{v_2}, \cdots \vec{v_k}$ be vectors in a vector space V. A vector \vec{v} is called a **linear combination** of $\vec{v_1}, \vec{v_2}, \cdots \vec{v_k}$ if $v = a_1 \vec{v_1} + a_2 \vec{v_2} + \cdots + a_k \vec{v_k} = \sum$ k $j=1$ $a_j \vec{v_j}$ for some real numbers a_1, a_2, \cdots, a_k .

Examples:

1. Recall $W_4 = \{ \begin{bmatrix} a & b & c \end{bmatrix} : a-b = c \}$. Let $\vec{v_1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$. Then for any $\vec{w} \in W$, $\vec{w} = a\vec{v_1} + b\vec{v_2}$, so every element of W_4 is a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

2. Let
$$
\vec{v_1} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}
$$
 and $\vec{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Is $\begin{bmatrix} 8 \\ 11 \end{bmatrix}$ a linear combination of $\vec{v_1}$ and $\vec{v_2}$?

3. Let
$$
\vec{v_1} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}
$$
, $\vec{v_2} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, and $\vec{v_3} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$. Is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ a linear combination of $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_3}$?

4. Consider the homogeneous system of equations represented by $A\vec{x} = \vec{0}$. Consider the set $W = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0}\}$. As we will show below, W is a subspace of \mathbb{R}^n . We call W the **solution space** of the homogeneous system of equations or the null space of the coefficient matrix A.