Math 229

Exam 3 Practice Problems

- 1. Solve the following equations (give exact answers whenever possible):
 - (a) $e^{3x-2} = e^{4-5x}$
 - (b) $9^{2x} = 27(3)^{2x+1}$
 - (c) $\log_2(3x^2 3) = \log_2(x^2 + x)$
 - (d) $\log_5(x^2 + 21) = 2$
 - (e) $\log_2(2x) + \log_2(x-3) = 3$
 - (f) $e^{2x-1} = 3$
- 2. Determine whether the following are True or False:

(a)
$$\ln\left(\frac{x^3}{(x+1)(x-1)}\right) = 3\ln x - \ln(x+1) + \ln(x-1)$$

- (b) $e^{\ln(x^2+1)} = x^2 + 1$
- (c) $e^{x^2} \cdot e^{3x} = e^{3x^3}$
- (d) $\frac{\ln(4x)}{\ln(2x)} = \ln 2$
- (e) $\ln\left(e^{x^2} 4\right) = x^2 \ln 4$
- 3. Find the exact value of the following logarithmic expressions:
 - (a) $\log_2(32)$

(c) $\log_5(1)$

(b) $\log_3(\frac{1}{27})$

- (d) $\log_4 32$
- 4. Use the laws of logarithms to simplify the expression: $\ln\left(\frac{x^2(x-1)^{\frac{3}{2}}}{(x-4)^3}\right)$
- 5. Use the change of base formula to approximate the following:
 - (a) $\log_5 10$
 - (b) log₉ 12
 - (c) $\log_{15} 7$
- (a) Suppose you invest \$10,000 in a savings account that pays 3\% annual interest compounded monthly. How much money will be in the account after 6 years?
 - (b) How long would it take \$5,000 invested at 6% annual interest compounded continuously to triple?
 - (c) Find the interest rate needed for an investment of \$2,000 to double in 6 years if the interest is comounded quarterly.
- 7. Suppose that a culture of bacteria that initially has 500 cells grows to 10,000 cells in 12 hours.
 - (a) Find a function f(t) that gives the number of cells in the culture as a function of time (in hours), assuming that this population grows continuously and exponentially.
 - (b) How long will it take for the culture to reach 1,000,000 cells?
- 8. Compute the derivatives of the following functions. You do not need to simplify your answers.

(a)
$$f(x) = e^{3x^2}$$

(b)
$$g(x) = \ln(3x^2 - 4x + 6)$$

(c)
$$h(x) = (x^2 + 1)e^{x^2+1}$$

(d)
$$k(x) = x^2 \ln(e^x + 1)$$

(e)
$$f(x) = \ln\left(\frac{x^2}{(2x-1)^3}\right)$$

(f) $g(x) = e^{e^{2x^3}}$

$$(f) g(x) = e^{e^{2x}}$$

(g)
$$h(x) = \ln(x^2 + 1)e^{x^3}$$

- 9. Find the tangent line to $f(x) = x \ln(2x)$ when $x = \frac{1}{2}$
- 10. Find the tangent line to $f(x) = 2xe^{2x-4}$ when x = 2
- 11. Determine the intervals where the function $g(t) = t^4 e^{2t}$ in increasing and the intervals where it is decreasing.
- 12. Find the absolute extrema of $g(t) = t^2 e^{2t}$ on the interval [-2, 2].
- 13. Suppose $\int_{0}^{2} f(x) dx = 4$ and $\int_{0}^{2} g(x) dx = 2$. Find $\int_{0}^{2} 2f(x) g(x) dx$
- 14. Evaluate the following integrals:

(a)
$$\int 6x^3 - 4x^{\frac{1}{2}} dx$$

(a)
$$\int 6x^3 - 4x^2 dx$$

(b) $\int 5x^4 - x^{\frac{3}{2}} dx$

(c)
$$\int \frac{4x^3 - 3x^2 + 2x}{2x^2} dx$$

(d)
$$\int_{-1}^{1} 3x^5 - 4x^3 dx$$

(e)
$$\int_0^3 4x^2 - e^{3x} dx$$

(f)
$$\int_0^4 e^{3x} + x^{-\frac{1}{2}} dx$$

(g)
$$\int 5x(x^2+1)^8 dx$$

(h)
$$\int_0^1 x^2 (2x^3 + 1)^2 dx$$

15. Assume f is continuous on [-5,3], $\int_{-5}^{-1} f(x) dx = -7$, $\int_{-1}^{3} f(x) dx = 4$, and $\int_{1}^{3} f(x) dx = 2$. Find:

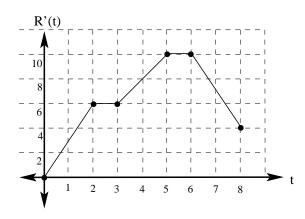
(a)
$$\int_{3}^{-1} f(x) \ dx$$

(c)
$$\int_{-\pi}^{3} f(x) \ dx$$

(b)
$$\int_{-5}^{1} f(x) \ dx$$

$$(d) \int_{-1}^{-1} f(x) \ dx$$

- (e) Find the average value of f on [-5, -1]
- 16. Suppose marginal revenue, R'(t) is given by the graph below, where t in in months and R'(t) is in \$1000s of dollars per month. Find the total revenue from t = 0 to t = 6.



- 17. Find the average value of $f(x) = x^2 \frac{1}{x^2}$ for $1 \le x \le 3$.
- 18. Find the area of the region enclosed by the graphs f(x) = x and $g(x) = \sqrt{x}$.
- 19. Find the area of the region enclosed by the graphs $f(x) = x^2 4$ and $g(x) = 4 x^2$.