A. Definition: An exponential function is a function of the form $f(x) = a^x$ for 0 < a < 1 or a > 1. Note: a is called the base of the exponential function.

The reason we exclude 0 and 1 as bases for exponential function is because $0^x = 0$ for and x, and $1^x = 1$ for any x, so these are just constant functions.

f(x)

 $\frac{1}{2'}$

3

1

3

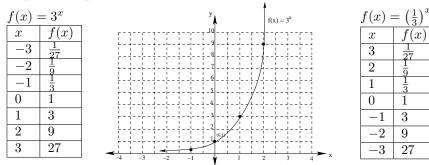
27

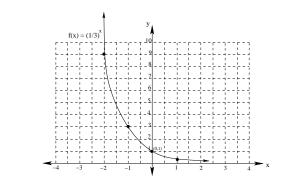
-29

-3

Example 1: Let $f(x) = 3^x$. Then: (a) $f(0) = 3^0 = 1$ (b) $f(2) = 3^2 = 9$ (c) $f(-3) = 3^{-3} = \frac{1}{27}$ (d) $f(\frac{2}{3}) = 3^{\frac{2}{3}} = \sqrt[3]{3^2} = \sqrt[3]{9} \approx 2.080084$

Graphs of exponential functions:





Properties of Exponential Graphs:

- 1. Domain: $(-\infty, \infty)$
- 2. Range: $(0,\infty)$
- 3. y-intercept: (0, 1), x intercept: none.
- 4. Continuous everywhere
- 5. Increasing if b > 1. Decreasing if 0 < b < 1.

Solving Basic Exponential Equations:

Examples:

1. $4^{2x-3} = 4^{5-x}$ Since $f(x) = 4^x$ is a one-to-one function, we can conclude that: 2x - 3 = 5 - x, or 3x = 8. Hence $x = \frac{8}{3}$. 2. $2^{4x-7} = 8^{2x-5}$ Since $8 = 2^3$, we can rewrite 8^{2x-5} as $(2^3)^{2x-5} = 2^{3(2x-5)} = 2^{6x-15}$. Then, as above, we know that 4x - 7 = 6x - 15, or 8 = 2x. Hence 4 = x.

The Compound Interest Formula: When a principal amount P in invested at interest rate r which is compounded ntimes per year and remains invested for t year, the amount A that results is given by the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$

Examples:

1. Suppose you put \$1000 in an account that pays 6% interest compounded monthly. How much money will be in the account 3 years later?

 $P = 1000, r = 0.06, n = 12, \text{ and } t = 3, \text{ so } A = 1000 \left(1 + \frac{.06}{.12}\right)^{(12)(3)} = 1000 \left(1.005\right)^{36} \approx \$1, 196.68$

2. Now Suppose you put \$2000 in an account that pays 7% interest compounded daily. How much money will be in the account 5 years later?

 $P = 2000, r = 0.07, n = 365, \text{ and } t = 5, \text{ so } A = 2000 \left(1 + \frac{.07}{.365}\right)^{(365)(5)} \approx 2000 \left(1.000191781\right)^{1825} \approx \2838.04

The Natural Exponential Function:

Definition: If we consider what happens to the base of our compound interest exponential term: $\left(1+\frac{1}{n}\right)$ as we compound more and more frequently

n	$\left(1+\frac{1}{n}\right)^n$
1	2.0
10	2.59374246
100	2.704813829
1,000	2.71692393
10,000	2.71814593
100,000	2.71826824
1,000,000	2.71828047

Therefore, we define $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. We say e is the base of the natural exponential function.

Continuously Compounded Interest Using this new base, we can measure the accumulation of interest that is compounded "instantaneously" rather than only n times a year. We do so using the formula: $A = Pe^{rt}$, where P, A, r, and t are exactly as above.

Example: Suppose you invest \$1000 at 6% interest compounded continuously for 3 years. Then at the end of the 3 years, you will have: $1000e^{0.06(3)} \approx $1,197.22$

Notice that this is about 54 cents more that we had investing the same amount at the same interest rate but only compounded monthly.

Example: Suppose the population of a bacterial colony if given by the function $f(t) = 500e^{-.87t}$ where t is in hours and f(t) is in thousands of cells.

Then $f(0) = 500e^{-.087(0)} = 500e^{0} = 500$, so there are initially 500,000 cells in the colony.

Similarly, $f(5) = 500e^{-.087(5)} = 500e^{-0.435} \approx 323.632$, so after 5 hours, the population of the colony has been reduced to 323.632 cells.

The Derivative of the Exponential Function: The basic rule for differentiating the exponential function is: $\frac{d}{d}e^x = e^x$

$$\overline{dx}^c$$

We'll not prove this rule, but it is in fact true that the exponential function is its own derivative!

The Chain Rule for Exponentials:

$$\frac{d}{dx}e^{f(x)} = f'(x) \cdot e^{f(x)}$$

Examples of Derivatives Involving Exponential Functions:

- 1. If $f(x) = e^{3x}$, then, using the Chain Rule for Exponentials: $f'(x) = e^{3x} \cdot (3) = 3e^{3x}$.
- 2. If $q(x) = e^{x^2}$, then, using the Chain Rule for Exponentials: $q'(x) = e^{x^2} \cdot (2x) = 2xe^{x^2}$.
- 3. If $h(x) = x^2 e^{5x}$, then, by the product rule: $h'(x) = 2xe^{5x} + 5x^2e^{5x}$.

4. If
$$k(x) = (e^{2x} + 3x^2)^{\frac{5}{2}} = \frac{5}{2}(e^{2x} + 3x^2)^{\frac{3}{2}}(2e^{2x} + 6x) = (5e^{2x} + 15x)(e^{2x} + 3x^2)^{\frac{3}{2}}$$

5. If $\ell(x) = e^{e^{x^2}}$, then, applying the Chain Rule for Exponentials several times: $\ell'(x) = e^{e^{x^2}} \cdot e^{x^2} \cdot x^2$

Applications of the Derivative Involving Exponentials:

1. Find the slope of the tangent line to $f(x) = 1 - e^{2x}$ at the point where f crosses the x-axis. Then find the equation of the tangent line.

First notice that if f(x) = 0, then $0 = 1 - e^{2x}$, so $e^{2x} = 1$, or, $\ln(e^{2x}) = \ln(1)$. Therefore, 2x = 0, so x = 0. Therefore, the point of tangency is (0, 0). Next, $f'(x) = -2e^{2x}$, so $m = f'(0) = -2e^0 = -2(1) = -2$.

Thus, the tangent line has equation y = -2x.