Definition: The Logarithm of x to the base b is defined as follows: $y = \log_b x$ if and only if $x = b^y$. for x > 0 and $b > 0, b \neq 1$. A logarithm basically asks: "what power would I need to raise the base b to in order to get x as the result?"

Examples:

(a) $\log_2 8 = 3$ since $8 = 2^3$ (b) $\log_2 \frac{1}{2} = -1$ since $\frac{1}{2} = 2^{-1}$ (c) $\log_3 81 = 4$ since $81 = 3^4$ (d) $\log_8 \frac{1}{64} = -2$ since $\frac{1}{64} = 8^{-2}$

More Examples:

(a) Suppose log₅ x = 3. Find x.
Since log₅ x = 3, x = 5³ = 125.
(b) Suppose log_z 16 = 2. Find z.
Since log_z 16 = 2, z² = 16, so z = ±4. But since we know that z > 0, then z = 4.

Notation:

(1) If b = 10, we abbreviate $\log_{10} x$ as $\log x$. (2) If b = e, we abbreviate $\log_e x$ as $\ln x$.

Properties of logarithms: Let m and n be positive real numbers.

1.	$\log_b mn = \log_b m + \log_b n$	5.	$\log_b b = 1$
2.	$\log_b \frac{m}{n} = \log_b m - \log_b n$	6. $\log_b b^x$	log $h^x - x$
3.	$\log_b m^n = n \cdot \log_b m$		$\log_b v = x$
4.	$\log_b 1 = 0$	7.	$b^{\log_b x} = x$

Examples:

- 1. $\log 16 = \log 4^2 = 2 \log 4$
- 2. $\log \frac{7}{16} = \log 7 \log 16 = \log 7 \log 4^2 = \log 7 2\log 4$
- 3. $\log 24 = (\log 8 \cdot 3) = \log 8 + \log 3 = \log 2^3 + \log 3 = 3 \log 2 + \log 3$
- 4. $\ln\left(\frac{e^{2x}}{e^x}\right) = \ln e^2 x \ln e^x = 2x \ln e x \ln e = 2x x = x$

Graphs of logarithmic functions:

Properties of Logarithmic Graphs:

- 1. Domain: $(0,\infty)$
- 2. Range: $(-\infty, \infty)$
- 3. y-intercept: none. x intercept (1,0)

4. Continuous on $(0,\infty)$

5. Increasing if b > 1. Decreasing if 0 < b < 1.

The Derivative of Logarithmic Functions: The basic rule for differentiating the natural logarithmic function is:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Proof:

Recall that by the inverse property of exponentials and logarithms, $e^{\ln x} = x$ for x > 0. Differentiating both sides of this equation, $\frac{d}{dx} (e^{\ln x}) = \frac{d}{dx}x$ Which, by the chain rule, is: $\frac{d}{dx} (\ln x) \cdot e^{\ln x} = 1$, or, again applying the inverse property: $\frac{d}{dx} (\ln x) \cdot x = 1$. Therefore, dividing both sides by x: $\frac{d}{dx} (\ln x) = \frac{1}{x}$.

The Chain Rule for Logarithmic Functions:

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$$

Examples of Derivatives Involving Logarithmic Functions:

- 1. If $f(x) = x^2 \ln x$, then, by the product rule: $f'(x) = 2x \ln x + x^2 \cdot \frac{1}{x} = 2x \ln x + x$.
- 2. If $g(x) = \ln(x^2)$, then, using the Chain Rule: $g'(x) = \frac{2x}{x^2} = \frac{2}{x}$. Alternatively, we could have used the properties of logarithms to rewrite $g(x) = \ln(x^2)$ as $g(x) = 2 \ln x$. Then $g'(x) = 2 \cdot \frac{1}{x} = \frac{2}{x}$.
- 3. If $h(x) = \ln[(x^2 + 1)(3x 2)^3]$, then, again using the properties of logarithms to rewrite h(x), $h(x) = \ln(x^2 + 1) + \ln(3x - 2)^3 = \ln(x^2 + 1) + 3\ln(3x - 2)$. Thus $h'(x) = \frac{2x}{x^2 + 1} + 3 \cdot \frac{3}{3x - 2} = \frac{2x}{x^2 + 1} + \frac{9}{3x - 2}$.