Solving a System of 3 Equations in 3 Unknowns Using Matrices

Example 1: Given the system of equations:

3r +2y =95
—xr 44z = -2
2z +y =10
We will solve this system by changing to matrix form and transforming the matrix:
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Therefore, the solution to this system is x = 15, y = —20, and z = %
Example 2: Given the system of equations:
20 +y —z2=2
3r+2z=4
rT—y+3z2=2
We will solve this system by changing to matrix form and transforming the matrix:
2 1 —-1]2 1 -1 3 |2 1 -1 3| 2 1 -1 3| 2
30 2 (4B 13 0 2 4B 1o 3 7|2 |, |0 3 7|2
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Notice that there is nothing else we can do to reduce this matrix. Since we have a row of zeroes, this
system of equations does not have a unique solution. Since 0 = 0 is always true, we know that we have
infinitely many solutions - actually, a line of solutions. But we can do a bit better than this. Interpreting
the reduced form of the matrix found above, we have the equations:
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Letting z = t gives us the following equations:
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That is, all solutions to this system of equations have the form: (% — %t, —% + %t, t).

For example, when ¢ = 0, we have the solution (%, —%, 0).



