Math 262
Exam 4 - Practice Problem Solutions

1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges,
whenever possible, find the value of the limit of the sequence.
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Notice that if we consider the absolute value of this sequence: lim =-.
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From this, we see that the subsequence of even terms of this sequence converges to % while the subsequence of
odd terms converges to —%. Hence this sequence diverges.
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Therefore, this sequence converges to 0.
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Also, lim — =0 and lim — =0, so by the sandwich theorem for sequences, lim
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Consider the limit of the related function: lim /z = lim T%.
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Taking the natural logarithm of this gives: lim —lnz = lim nL which, by L’Hopital’s Rule:
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First, notice that a,41 = =(n+1):-
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Also, when n > 2, 2n 4+ 2 < 3n, so nt

<nor0<(n+1)%<n. Hence for n > 2, a,, > any1 > 0.

But this means that this sequence is both monotone and bounded. Hence this sequence converges.
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Again making use of logarithms and L’Hopital’s Rule:
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2. Suppose a; = 1 and a,41 =
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Compute as
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ar = 1 (3281 + 4»1640) _ 1 (32812+44-1640% ) __ 21523361
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Find lim a, [ Hint: Let L = lim apy; = lim a,. Then L= - (L + — | ]
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Solving L = 3 (L + L) for L:
L*+4

2L = ,50 212 = L? + 4. Thus L? = 4, hence L = +2.

Since a4 is positive, and whenever a,, is positive, so is a,+1, we can reject the negative solution and conclude that
L=2.

3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.
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This is a geometric series with a = —% and r = —%. Clearly, |r| < 1. Therefore, S = T ¢ - . (6 y =>2=
-r -3 3
13 1
6 4 8
o0 1 n
4=
>4 (3)
n=1
2 2
This is a geometric series with a = 2 and r = %. Clearly, |r| < 1. Therefore, S = ¢ - = (1) =1=4
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Using partial fractions, we can rewrite —— = — + ——, where A(n+ 3) + Bn =09.
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Setting n = 0 gives 34 =9 or A = 3. Setting n = —3 gives —3B =9 or B = —3.
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1= 4. Therefore, this series diverges by the nth term test.
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Therefore, this is a telescoping series of the form: 3 (1 ~ 2 + 375 + 3~ 6)

Hence for n >3, S, =3 1+~ + 2 — — 1 1
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Using partial fractions, we can rewrite —— = — + —— where A(n + 2) + Bn =4.

nn+2) n n+2
Setting n = 0 gives 2A =4 or A = 2. Setting n = —2 gives —2B =4 or B = —2.
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Then we have —— = — — —92( =
nn+2) n n+2 n n+2

1 1 1 1 1
Therefore, this is a telescoping series of the form: 2 (1 ~3 + > 1 + 3~ 5)
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This is a geometric series with a = —% and r = —%. Clearly, |r| < 1. Therefore, S =
g 3

3
—1.

4. Use geometric series to express each of the following repeating decimals in fractional form.
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Notice that this repeating decimal can be written as the series: Z <10>
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This is a geometric series with a = %0 and r = %. Clearly, |r| < 1. Therefore, S = = 10 =10 =
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Notice that this repeating decimal can be written as the series: Z 78 (100)
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This is a geometric series with a = % and r = ﬁ. Clearly, |r| < 1. Therefore, S = = 1001 = 19090
L=r 1-(m) w0
8
99"
137137137
o0 1 n
Notice that this repeating decimal can be written as the series: Z 137 ( >
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This is a geometric series with a = %070 and 7 = 1555 Clearly, |r| < 1. Therefore, S = =y - 1_ ?OL)
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Notice that this repeating decimal can be written as the series: Z 9 (10)
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This is a geometric series with a = 1% and r = %. Clearly, |r| < 1. Therefore, S = T =1 1? 0 = 19—0 =1
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5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the
series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.
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Notice that f(z) =

is continuous and decreasing for x > 2.
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Consider / ﬁ dzx. If we let w = Inz, then du = idx. Then, rewriting this as an improper integral:
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which converges. Therefore, the series Z 7 converges by the integral test.
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Since — < 1 for n > \[ Also, Zzo:l % is a convergent p-series. Thus the series
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Z ———5—— converges by comparison.
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Notice that | ———| < —. Since Z — is a convergent p-series, the series Z ————— converges by compar-
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Using the limit comparison test, let b, = —.
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Therefore, since Z — is divergent Z w diverges by the Limit Comparison Test
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Since — < 1 forn > 1, e(x+1) < €2 Therefore, ¢ < 6—3
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ut Z 5= e? Z e which is a convergent p-series. Thus Z 3 converges by comparison.
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First notice that Z o diverges, since if we let b, = —
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Then lim an _ lim A lim "o 4.
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Therefore, since is divergent, — dlver es by the Limit Comparison Test. Hence is
not absolutely convergent.
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Next, notice that lim = 0, and > . Thus by the Alternating Series test, Z (— is
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conditionally convergent.
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Using the Root Test, notice that { = .M li =-<1
sing the Root Test, notice tha (5n+ 1) o oreover, lim -
Hence, converges by the Root Test.
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Using the Ratio Test, a,41 = %
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Therefore, lim = lim — < 1. Hence Z Ty converges by the Ratio Test.
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We first check for absolute convergence by applying the ratio test to Z
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Then 2241 — il . (2n+ 1! = 4
an (2n + 3)! 4n (2n+3)(2n+2)

Therefore, lim Intl — lim 1 =0 < 1. Hence i 4 converges by the Ratio Test
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Thus nz::l (-1) Gni1) converges absolutely.
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Using the Ratio Test, a, = n and anp4+1 = (n ++1) _n +on jl nt .
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Therefore, lim Intl _ Jim n® + 3n® _;L_ nt - < 1. Hence Zn e~ " converges by the Ratio Test.
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First notice that Z \f is a divergent p-series (p = % < 1),s0 this series does not converge absolutely.
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Next, nh_)rr;o \f =0 and \/7 f
Hence, by the Alternating Series Test, this series converges conditionally.
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Therefore, nh%rrgo aa? = nlgrgo m =0 < 1. Hence Z ? converges by the Ratio Test.
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n=1

Recall that we can compute lim {/n as follows:
Tr—r00

Consider the limit of the related function: lim /z = lim T%.
xr—r 00 Tr— 00
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Taking the natural logarithm of this gives: lim —Ilnz = lim nL which, by L’Hopital’s Rule:
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Then lim z* = e® = 1. Hence lim Un=1
T—r0o0 n—roo

1 n 1 .
But then nhﬁrr;o 7 =1, and hence T}er;o (-1) n does not exist.

Thus, be this series diverges by the nth term test.

6. Estimate the sum of the series Z ()" — " %o within 0.01

n=1 n4 + 1
First notice that if f(z) T the 1 () (' +1) —a(da?) _ —32" 41 < 0 whenever x > 1
irst noti if f(z)=—— n f'(x) = = whenever x .
zt+ 17 (z* +1)2 (zt +1)2 -
Next, lim % = 0. Then, by the Error Estimation Theorem for Alternating Series, we need to find n such that
n—o0o N,
ans1 < 0.01.

Since I really don’t feel like solving a 4th degree polynomial equation that does not factor, we’ll find n by brute force.
Notice that ay = g = 557 ~ 0.015564 while a5 = 5’ ~ 0.007987

Therefore, we can apporximate S to within 0.01 by adding the first 4 terms of this series:
Sp=—-34+E -3+ 55 ~—-040

7. Determine the number of terms necessary to estimate the sum of the following series to within 1 x 1076
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Notice that this series is decreasing and its terms tend to 0 as n — oo

If % < 1079, then 10-6 <n? son?> 1/ 103_6 = /3000000 = 1732.05, so we can estimate S to within 1076 by
n
computing S,, with n = 1732.
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Notice that this series is decreasing and its terms tend to 0 as n — oo

Since the algebra is quite challenging, we will find n by brute force:
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Notice that a9 = o1 =~ .000282; a9 = 121 ~ .000008551
913 9l4

a13 13 000001316; a14 i 000000188

So we can estimate S to within 10~% by computing S,, with n = 13.
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8. Find all real values of x for which the series Z ()"
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converges.

We first use the ratio test on the positive part of this series:
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Therefore, nlgr;o . = nlgrolo i = % Hence, by the Ratio Test, Z (="

— converges absolutely when
n .
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r < 4 and diverges when x > 4.

This test is inconclusive when |z| = 4.
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When z = 4, we have Z —

n oo

o Z —, which converges conditionally by the alternating series test (the
n-

n=1

positive part of this series is clearly decreasmg and the terms tend to zero).
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Wh =—4 h E -1 :E -1 f:E —, which d .
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Therefore, this series converges for all z-values in the interval (—4.4].

9. For each of the following power series, find the interval of convergence and the radius of convergence:
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Notice that a,,; = (—1)" " (n + 1)?2" . Then lim ey T (A V7" = lim mw
n—oo | Qp n—oo 7’},2|:C‘" n—o0o n2
2 2 2
= |z| lim nte_ |z| lim — = |z|, so this series converges absolutely for —1 < z < 1.
Notice when = = 1, we have Z(—l)"nzln = Z(—l)"nQ which diverges by the nth term test.
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Similarly, when = = —1, we have Z(fl)"nQ(fl)" = Z(fl)me = Z 1 which diverges by the nth term test.
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Hence, the interval of convergence is: (—1,1) and the radius convergence is: R = 1.
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when |z — 3| < 1, or for 5 <<y
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Notice when x = —, we have Z —= — lIs a convergent p-series, the original
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Hence, the interval of convergence is: {2, 2] and the radius convergence is: R = 3
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absolutely when |z + 1| <3 or for —4 <z < 2.
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Notice when = = —4, we have Z —3)" = Z(—l)"rﬁ, which diverges by the nth term test.

n= 1 n=1

Notice that a1 =

, which, after a few applications of L’Hopital’s Rule, is , 80 this series converges

Similarly, when & = 2, we have Z ?3” Z n® which diverges by the nth term test.
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Hence, the interval of convergence is: (—4,2) and the radius convergence is: R = 3.
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Notice that a,+1 = (—1) CE (z —10)""". Then nhﬁn;o a0 nhﬁngo CES 107z — T0]°
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Hence the interval of convergence is (—oo,00) and R = oo.
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= —|z—2] lim —— = —|x — 2|, so this series converges absolutely when |z — 2| < 10 or for —8 < & < 12.
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Notice when x = —8, we have E (=" 10 (—10)" = E (-D)"—=(-1)" = E —, which diverges since it is the
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harmonic series.

Similarly, when x = 10, we have Z(— nlO”
=1

Hence, the interval of convergence is: (—8,10] and the radlus convergence is: R = 10.

10. Use a known series to find a power series in x that has the given function as its sum:
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Recall the Maclaurin series for sinu = nzo(—l)”m
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Recall the Maclaurin series for In(1 + z) = -1H"
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Recall the Maclaurin series for arctan(z) = ;(71)” 1T % + % - % +e
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Therefore, m—arctan()-x—(x—a;—i—a;—x?—i— >:Z( H" ;n+1

Z — Wthh converges by the Alternating Series Test.



