1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges, whenever possible, find the value of the limit of the sequence.

(a)
$$\left\{\frac{n+2}{3n-1}\right\}$$

Notice that $\lim_{x\to\infty}\frac{x+2}{3x-1}=\frac{1}{3}$. Therefore, this sequence converges to $\frac{1}{3}$.

(b)
$$\left\{ (-1)^n \frac{n+2}{3n-1} \right\}$$

Notice that if we consider the absolute value of this sequence: $\lim_{x\to\infty} \frac{x+2}{3x-1} = \frac{1}{3}$.

From this, we see that the subsequence of even terms of this sequence converges to $\frac{1}{3}$ while the subsequence of odd terms converges to $-\frac{1}{3}$. Hence this sequence diverges.

(c)
$$\{ne^{-n}\}$$

Notice that $\lim_{x\to\infty} xe^{-x} = \lim_{x\to\infty} \frac{x}{e^x} = \lim_{x\to\infty} \frac{1}{e^x} = 0$. Therefore, this sequence converges to 0.

(d)
$$\left\{\frac{\cos n}{e^n}\right\}$$

Notice that $\frac{-1}{e^n} \le \frac{\cos n}{e^n} \le \frac{1}{e^n}$

Also, $\lim_{x\to\infty}\frac{-1}{e^n}=0$ and $\lim_{x\to\infty}\frac{1}{e^n}=0$, so by the sandwich theorem for sequences, $\lim_{x\to\infty}\frac{\cos n}{e^n}=0$

(e)
$$\{\sqrt[n]{n}\}$$

Consider the limit of the related function: $\lim_{x\to\infty} \sqrt[x]{x} = \lim_{x\to\infty} x^{\frac{1}{x}}$.

Taking the natural logarithm of this gives: $\lim_{x\to\infty} \frac{1}{x} \ln x = \lim_{x\to\infty} \frac{\ln x}{x}$ which, by L'Hôpital's Rule:

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

Then $\lim_{x\to\infty} x^{\frac{1}{x}} = e^0 = 1$. Hence $\lim_{n\to\infty} \sqrt[n]{n} = 1$

(f)
$$\left\{\frac{n2^n}{3^n}\right\}$$

First, notice that $a_{n+1} = \frac{(n+1)2^{n+1}}{3^{n+1}} = (n+1)\frac{2}{3} \cdot \left(\frac{2}{3}\right)^n$.

Also, when n > 2, 2n + 2 < 3n, so $\frac{2n+2}{3} < n$ or $0 < (n+1)\frac{2}{3} < n$. Hence for n > 2, $a_n > a_{n+1} \ge 0$.

But this means that this sequence is both monotone and bounded. Hence this sequence converges.

$$(g) \left\{ \left(1 + \frac{2}{n}\right)^{2n} \right\}$$

Again making use of logarithms and L'Hôpital's Rule:

$$\lim_{x \to \infty} 2x \ln\left(1 + \frac{2}{x}\right) = 2\lim_{x \to \infty} \frac{\ln\left(1 + \frac{2}{x}\right)}{\frac{1}{x}} = 2\lim_{x \to \infty} \frac{\frac{1}{1 + \frac{2}{x}} \cdot \left(-2x^{-2}\right)}{-x^{-2}}$$

$$=4\lim_{x\to\infty}\frac{1}{1+\frac{2}{x}}=4$$

Hence
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{2n} = e^4$$

2. Suppose
$$a_1 = 1$$
 and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{4}{a_n} \right)$

(a) Compute
$$a_5$$

 $a_1 = 1$; $a_2 = \frac{1}{2} \left(1 + \frac{4}{1} \right) = \frac{5}{2}$; $a_3 = \frac{1}{2} \left(\frac{5}{2} + \frac{4 \cdot 2}{5} \right) = \frac{1}{2} \left(\frac{5}{2} + \frac{8}{5} \right) = \frac{41}{20}$
 $a_4 = \frac{1}{2} \left(\frac{41}{20} + \frac{4 \cdot 20}{41} \right) = \frac{1}{2} \left(\frac{41^2 + 4 \cdot 20^2}{41 \cdot 20} \right) = \frac{3281}{1640}$
 $a_5 = \frac{1}{2} \left(\frac{3281}{1640} + \frac{4 \cdot 1640}{3281} \right) = \frac{1}{2} \left(\frac{3281^2 + 4 \cdot 1640^2}{1640 \cdot 3281} \right) = \frac{21523361}{10761680}$

(b) Find
$$\lim_{n\to\infty} a_n$$
 [Hint: Let $L = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$. Then $L = \frac{1}{2} \left(L + \frac{4}{L} \right)$] Solving $L = \frac{1}{2} \left(L + \frac{4}{L} \right)$ for L :

$$2L = \frac{L^2 + 4}{L}$$
, so $2L^2 = L^2 + 4$. Thus $L^2 = 4$, hence $L = \pm 2$.

Since a_1 is positive, and whenever a_n is positive, so is a_{n+1} , we can reject the negative solution and conclude that L=2.

3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2} \left(-\frac{1}{3} \right)^n$$

This is a geometric series with $a = -\frac{1}{6}$ and $r = -\frac{1}{3}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{-\frac{1}{6}}{1-\left(-\frac{1}{3}\right)} = \frac{-\frac{1}{6}}{\frac{4}{3}} = -\frac{1}{6} \cdot \frac{3}{4} = -\frac{1}{8}$.

(b)
$$\sum_{n=1}^{\infty} 4\left(\frac{1}{2}\right)^n$$

This is a geometric series with a=2 and $r=\frac{1}{2}$. Clearly, |r|<1. Therefore, $S=\frac{a}{1-r}=\frac{2}{1-\left(\frac{1}{2}\right)}=\frac{2}{\frac{1}{2}}=4$.

(c)
$$\sum_{n=1}^{\infty} \frac{4n}{n+2}$$

Notice that $\lim_{n\to\infty}\frac{4n}{n+2}=\lim_{n\to\infty}\frac{4}{n}=4$. Therefore, this series diverges by the *n*th term test.

(d)
$$\sum_{n=1}^{\infty} \frac{9}{n(n+3)}$$

Using partial fractions, we can rewrite $\frac{9}{n(n+3)} = \frac{A}{n} + \frac{B}{n+3}$, where A(n+3) + Bn = 9.

Setting n = 0 gives 3A = 9 or A = 3. Setting n = -3 gives -3B = 9 or B = -3.

Then we have
$$\frac{9}{n(n+3)} = \frac{3}{n} - \frac{3}{n+3} = 3\left(\frac{1}{n} - \frac{1}{n+3}\right)$$

Therefore, this is a telescoping series of the form: $3\left(1-\frac{1}{4}+\frac{1}{2}-\frac{1}{5}+\frac{1}{3}-\frac{1}{6}...\right)$

Hence for
$$n \ge 3$$
, $S_n = 3\left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3}\right)$

Thus
$$\lim_{n \to \infty} S_n = 3\left(1 + \frac{1}{2} + \frac{1}{3}\right) = \frac{11}{2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$$

Using partial fractions, we can rewrite $\frac{4}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$, where A(n+2) + Bn = 4.

Setting n = 0 gives 2A = 4 or A = 2. Setting n = -2 gives -2B = 4 or B = -2.

Then we have
$$\frac{4}{n(n+2)} = \frac{2}{n} - \frac{2}{n+2} = 2\left(\frac{1}{n} - \frac{1}{n+2}\right)$$

Therefore, this is a telescoping series of the form: $2\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}...\right)$

Hence for
$$n \ge 3$$
, $S_n = 2\left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right)$

Thus
$$\lim_{n\to\infty} S_n = 2\left(1 + \frac{1}{2}\right) = 3$$

(f)
$$\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n}$$

Notice that
$$\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n} \sum_{n=1}^{\infty} 4 \left(\frac{-1}{3}\right)^n$$

This is a geometric series with $a=-\frac{4}{3}$ and $r=-\frac{1}{3}$. Clearly, |r|<1. Therefore, $S=\frac{a}{1-r}=\frac{-\frac{4}{3}}{1-\left(-\frac{1}{3}\right)}=\frac{-\frac{4}{3}}{\frac{4}{3}}=-1$

- 4. Use geometric series to express each of the following repeating decimals in fractional form.
 - (a) $.11\overline{1}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$

This is a geometric series with $a = \frac{1}{10}$ and $r = \frac{1}{10}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{1}{10}}{1-(\frac{1}{10})} = \frac{\frac{1}{10}}{\frac{9}{10}} = \frac{1}{9}$.

(b) $.7878\overline{78}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} 78 \left(\frac{1}{100}\right)^n$

This is a geometric series with $a = \frac{78}{100}$ and $r = \frac{1}{100}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{78}{100}}{1-\left(\frac{1}{100}\right)} = \frac{\frac{78}{100}}{\frac{99}{100}} = \frac{78}{99}$.

(c) $.137137\overline{137}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} 137 \left(\frac{1}{1000}\right)^n$

This is a geometric series with $a = \frac{137}{1000}$ and $r = \frac{1}{1000}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{137}{100}}{1 - \left(\frac{1}{1000}\right)} = \frac{\frac{137}{1000}}{\frac{999}{1000}} = \frac{137}{999}$.

(d) $.99\overline{9}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} 9 \left(\frac{1}{10}\right)^n$

This is a geometric series with $a = \frac{9}{10}$ and $r = \frac{1}{10}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{9}{10}}{1-\left(\frac{1}{10}\right)} = \frac{\frac{9}{10}}{\frac{9}{10}} = 1$.

5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=2}^{\infty} \frac{4}{n \left(\ln n\right)^3}$$

Notice that $f(x) = \frac{4}{x(\ln x)^3}$ is continuous and decreasing for $x \ge 2$.

Consider $\int_2^\infty \frac{4}{x(\ln x)^3} dx$. If we let $u = \ln x$, then $du = \frac{1}{x} dx$. Then, rewriting this as an improper integral:

$$\lim_{t \to \infty} \int_{\ln 2}^{\ln t} 4u^{-3} \ du = \lim_{t \to \infty} -2u^{-2} \bigg|_{\ln 2}^{\ln t} = \lim_{t \to \infty} -\frac{2}{(\ln t)^2} + \frac{2}{(\ln 2)^2}$$

which converges. Therefore, the series $\sum_{n=2}^{\infty} \frac{4}{n (\ln n)^3}$ converges by the integral test.

(b)
$$\sum_{n=1}^{\infty} \frac{\sqrt{1+n^{-1}}}{n^2}$$

Since $\frac{1}{n} \le 1$ for $n \ge 1$, $\frac{\sqrt{1+n^{-1}}}{n^2} = \frac{\sqrt{1+\frac{1}{n}}}{n^2} \le \frac{\sqrt{2}}{n^2}$. Also, $\sum_{n=1}^{\infty} \frac{\sqrt{2}}{n^2}$ is a convergent p-series. Thus the series $\sum_{n=1}^{\infty} \frac{\sqrt{1+n^{-1}}}{n^2}$ converges by comparison.

(c)
$$\sum_{n=1}^{\infty} \frac{\sin n - 2}{n^2}$$

Notice that $\left|\frac{\sin n - 2}{n^2}\right| \le \frac{3}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{3}{n^2}$ is a convergent *p*-series, the series $\sum_{n=1}^{\infty} \frac{\sin n - 2}{n^2}$ converges by comparison

(d)
$$\sum_{n=1}^{\infty} \frac{n^4 + 2n - 1}{n^5 + 3n^2 - 20}$$

Using the limit comparison test, let $b_n = \frac{1}{n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^4 + 2n - 1}{n^5 + 3n^2 - 20} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{n^5 + 2n^2 - n}{n^5 + 3n^2 - 20} = 1.$$

Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum_{n=1}^{\infty} \frac{n^4 + 2n - 1}{n^5 + 3n^2 - 20}$ diverges by the Limit Comparison Test.

(e)
$$\sum_{n=1}^{\infty} \frac{e^{\left(\frac{1}{n}+1\right)}}{n^3}$$

Since $\frac{1}{n} \le 1$ for $n \ge 1$, $e^{\left(\frac{1}{n}+1\right)} \le e^2$ Therefore, $\frac{e^{\left(\frac{1}{n}+1\right)}}{n^3} \le \frac{e^2}{n^3}$.

But $\sum_{n=1}^{\infty} \frac{e^2}{n^3} = e^2 \sum_{n=1}^{\infty} \frac{1}{n^3}$, which is a convergent *p*-series. Thus $\sum_{n=1}^{\infty} \frac{e^{\left(\frac{1}{n}+1\right)}}{n^3}$ converges by comparison.

(f)
$$\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$$

First notice that $\sum_{n=1}^{\infty} \frac{4}{n+1}$ diverges, since if we let $b_n = \frac{1}{n}$.

Then
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{4}{n+1} \cdot \frac{n}{1} = \lim_{n\to\infty} \frac{4n}{n+1} = 4.$$

Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum_{n=1}^{\infty} \frac{4}{n+1}$ diverges by the Limit Comparison Test. Hence $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$ is

Next, notice that $\lim_{n\to\infty}\frac{4}{n+1}=0$, and $\frac{4}{n+1}\geq\frac{4}{n+2}$. Thus by the Alternating Series test, $\sum_{n=1}^{\infty}\left(-1\right)^{n}\frac{4}{n+1}$ is conditionally convergent.

(g)
$$\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1} \right)^n$$

Using the Root Test, notice that $\sqrt[n]{\left(\frac{4n}{5n+1}\right)^n} = \frac{4n}{5n+1}$. Moreover, $\lim_{n\to\infty} \frac{4n}{5n+1} = \frac{4}{5} < 1$

Hence, $\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1}\right)^n$ converges by the Root Test.

$$\text{(h) } \sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$$

Using the Ratio Test, $a_{n+1} = \frac{2(n+1)}{3^{n+1}}$.

Then
$$\frac{a_{n+1}}{a_n} = \frac{2(n+1)}{3^{n+1}} \cdot \frac{3^n}{2n} = \frac{n+1}{3n}$$
.

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{n+1}{3n} = \frac{1}{3} < 1$. Hence $\sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$ converges by the Ratio Test.

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$$

We first check for absolute convergence by applying the ratio test to $\sum_{n=1}^{\infty} \frac{4^n}{(2n+1)!}$:

Notice that
$$a_{n+1} = \frac{4^{n+1}}{(2(n+1)+1)!} = \frac{4^{n+1}}{(2n+3)!}$$

Then
$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{(2n+3)!} \cdot \frac{(2n+1)!}{4^n} = \frac{4}{(2n+3)(2n+2)}.$$

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{4}{(2n+3)(2n+2)} = 0 < 1$. Hence $\sum_{n=1}^{\infty} \frac{4^n}{(2n+1)!}$ converges by the Ratio Test.

Thus $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$ converges absolutely.

(j)
$$\sum_{n=1}^{\infty} n^3 e^{-n}$$

Using the Ratio Test, $a_n = \frac{n^3}{e^n}$ and $a_{n+1} = \frac{(n+1)^3}{e^{n+1}} = \frac{n^3 + 3n^2 + 3n + 1}{e^{n+1}}$.

Then
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 3n^2 + 3n + 1}{e^{n+1}} \cdot \frac{e^n}{n^3} = \frac{n^3 + 3n^2 + 3n + 1}{e^{n+1}}$$

Therefore, $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n^3+3n^2+3n+1}{en^3}=\frac{1}{e}<1$. Hence $\sum_{n=1}^{\infty}n^3e^{-n}$ converges by the Ratio Test.

(k)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

First notice that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series $(p = \frac{1}{2} \le 1)$, so this series does not converge absolutely.

Next,
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$
 and $\frac{1}{\sqrt{n+1}} \le \frac{1}{\sqrt{n}}$.

Hence, by the Alternating Series Test, this series converges conditionally.

(l)
$$\sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}$$

Using the Ratio Test, $a_{n+1} = \frac{4^{n+1}}{((n+1)!)^2} = \frac{4^{n+1}}{(n+1)!(n+1)!}$

Then
$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{(n+1)!(n+1)!} \cdot \frac{n!n!}{4^n} = \frac{4}{(n+1)^2}.$$

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{4}{(n+1)^2} = 0 < 1$. Hence $\sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}$ converges by the Ratio Test.

(m)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$$

Recall that we can compute $\lim_{n\to\infty} \sqrt[n]{n}$ as follows:

Consider the limit of the related function: $\lim_{x\to\infty} \sqrt[x]{x} = \lim_{x\to\infty} x^{\frac{1}{x}}$.

Taking the natural logarithm of this gives: $\lim_{x\to\infty} \frac{1}{x} \ln x = \lim_{x\to\infty} \frac{\ln x}{x}$ which, by L'Hôpital's Rule:

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

Then
$$\lim_{x\to\infty} x^{\frac{1}{x}} = e^0 = 1$$
. Hence $\lim_{n\to\infty} \sqrt[n]{n} = 1$

But then $\lim_{n\to\infty}\frac{1}{\sqrt[n]{n}}=1$, and hence $\lim_{n\to\infty}(-1)^n\frac{1}{\sqrt[n]{n}}$ does not exist.

Thus, be this series diverges by the nth term test

6. Estimate the sum of the series $\sum_{n=0}^{\infty} (-1)^n \frac{n}{n^4 + 1}$ to within 0.01

First notice that if
$$f(x) = \frac{x}{x^4 + 1}$$
, then $f'(x) = \frac{(x^4 + 1) - x(4x^3)}{(x^4 + 1)^2} = \frac{-3x^4 + 1}{(x^4 + 1)^2} < 0$ whenever $x \ge 1$.

Next, $\lim_{\substack{n \to \infty \\ n \to 0}} \frac{n}{n^4 + 1} = 0$. Then, by the Error Estimation Theorem for Alternating Series, we need to find n such that

Since I really don't feel like solving a 4th degree polynomial equation that does not factor, we'll find n by brute force. Notice that $a_4 = \frac{4}{4^4+1} = \frac{4}{257} \approx 0.015564$ while $a_5 = \frac{5}{5^4+1} \approx 0.007987$

Therefore, we can apporximate S to within 0.01 by adding the first 4 terms of this series:

$$S_4 = -\frac{1}{2} + \frac{2}{17} - \frac{3}{82} + \frac{4}{257} \approx -0.40$$

7. Determine the number of terms necessary to estimate the sum of the following series to within 1×10^{-6}

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{n^2}$$

otice that this series is decreasing and its terms tend to 0 as $n \to \infty$

If $\frac{3}{n^2} < 10^{-6}$, then $\frac{3}{10^{-6}} < n^2$, so $n^2 > \sqrt{\frac{3}{10^{-6}}} = \sqrt{3000000} \approx 1732.05$, so we can estimate S to within 10^{-6} by

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$$

Notice that this series is decreasing and its terms tend to 0 as $n \to \infty$

Since the algebra is quite challenging, we will find n by brute force:

Notice that
$$a_{10} = \frac{2^{10}}{10!} \approx .000282$$
; $a_{12} = \frac{2^{12}}{12!} \approx .000008551$

$$a_{13} = \frac{2^{13}}{13!} \approx .000001316; \ a_{14} = \frac{2^{14}}{14!} \approx .000000188$$

So we can estimate S to within 10^{-6} by computing S_n with n=13.

8. Find all real values of x for which the series $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n \cdot 4^n}$ converges.

We first use the ratio test on the positive part of this series:

Notice that
$$a_{n+1} = \frac{x^{n+1}}{(n+1)4^{n+1}} = \frac{4^{n+1}}{(n+1)!(n+1)!}$$
.

Then
$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)4^{n+1}} \cdot \frac{n4^n}{x^n} = \frac{nx}{4(n+1)}.$$

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{x}{4} \cdot \frac{n}{n+1} = \frac{x}{4}$. Hence, by the Ratio Test, $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n \cdot 4^n}$ converges absolutely when x < 4 and diverges when x > 4.

This test is inconclusive when |x|=4.

When x = 4, we have $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{n \cdot 4^n} = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$, which converges conditionally by the alternating series test (the positive part of this series is clearly decreasing and the terms tend to zero).

When
$$x = -4$$
, we have $\sum_{n=1}^{\infty} (-1)^n \frac{(-4)^n}{n \cdot 4^n} = \sum_{n=1}^{\infty} (-1)^{2n} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges.

Therefore, this series converges for all x-values in the interval (-4.4].

9. For each of the following power series, find the interval of convergence and the radius of convergence:

(a)
$$\sum_{n=1}^{\infty} (-1)^n n^2 x^n$$

Notice that
$$a_{n+1} = (-1)^{n+1}(n+1)^2 x^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2 |x|^{n+1}}{n^2 |x|^n} = \lim_{n \to \infty} |x| \frac{n^2 + 2n + 1}{n^2}$
$$= |x| \lim_{n \to \infty} \frac{2n + 2}{2n} = |x| \lim_{n \to \infty} \frac{2}{2} = |x|, \text{ so this series converges absolutely for } -1 < x < 1.$$

Notice when
$$x=1$$
, we have $\sum_{n=1}^{\infty} (-1)^n n^2 1^n = \sum_{n=1}^{\infty} (-1)^n n^2$ which diverges by the *n*th term test.

Similarly, when
$$x = -1$$
, we have $\sum_{n=1}^{\infty} (-1)^n n^2 (-1)^n = \sum_{n=1}^{\infty} (-1)^2 n n^2 = \sum_{n=1}^{\infty} 1$ which diverges by the *n*th term test.

Hence, the interval of convergence is: (-1,1) and the radius convergence is: R=1.

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2} (x-3)^n$$

Notice that
$$a_{n+1} = \frac{2^{n+1}}{(n+1)^2}(x-3)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2^{n+1}|x-3|^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n|x-3|^n}$

$$= \lim_{n \to \infty} |x-3| \cdot 2 \cdot \frac{n^2 + 2n + 1}{n^2} = 2|x-3| \lim_{n \to \infty} \frac{2n+2}{2n} = 2|x-3| \lim_{n \to \infty} \frac{2}{2} = 2|x-3|, \text{ so this series converges absolutely}$$
when $|x-3| < \frac{1}{2}$, or for $\frac{5}{2} < x < \frac{7}{2}$.

Notice when
$$x = \frac{5}{2}$$
, we have $\sum_{n=1}^{\infty} \frac{2^n}{n^2} (-\frac{1}{2})^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ Thus, since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series, the original series converges absolutely.

Similarly, when
$$x = \frac{7}{2}$$
, we have $\sum_{n=1}^{\infty} \frac{2^n}{n^2} (\frac{1}{2})^n = \sum_{n=1}^{\infty} \frac{(1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$, which is a convergent *p*-series.

Hence, the interval of convergence is: $\left[\frac{5}{2}, \frac{7}{2}\right]$ and the radius convergence is: $R = \frac{1}{2}$.

(c)
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n} (x+1)^n$$

Notice that
$$a_{n+1} = \frac{(n+1)^3}{3^{n+1}}(x+1)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^3|x+1|^{n+1}}{3^{n+1}} \cdot \frac{3^n}{n^3|x+1|^n}$

$$=\frac{1}{3}|x+1|\lim_{n\to\infty}\frac{(n+1)^3}{n^3}$$
, which, after a few applications of L'Hôpital's Rule, is $\frac{|x+1|}{3}$, so this series converges absolutely when $|x+1|<3$ or for $-4< x<2$.

Notice when
$$x = -4$$
, we have $\sum_{n=1}^{\infty} \frac{n^3}{3^n} (-3)^n = \sum_{n=1}^{\infty} (-1)^n n^3$, which diverges by the *n*th term test.

Similarly, when
$$x=2$$
, we have $\sum_{n=1}^{\infty} \frac{n^3}{3^n} 3^n = \sum_{n=1}^{\infty} n^3$ which diverges by the *n*th term test.

Hence, the interval of convergence is: (-4,2) and the radius convergence is: R=3.

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{10^n}{n!} (x-10)^n$$

Notice that
$$a_{n+1} = (-1)^{n+1} \frac{10^{n+1}}{(n+1)!} (x-10)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{10^{n+1} |x-10|^{n+1}}{(n+1)!} \cdot \frac{n!}{10^n |x-10|^n}$
$$= |x-10| \lim_{n \to \infty} \frac{10}{n+1} = 0$$

Hence the interval of convergence is $(-\infty, \infty)$ and $R = \infty$.

(e)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 10^n} (x-2)^n$$

Notice that
$$a_{n+1} = (-1)^{n+1} \frac{1}{(n+1)10^{n+1}} (x-2)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x-2|^{n+1}}{(n+1)10^{n+1}} \cdot \frac{n10^n}{|x-2|^n}$
= $\frac{1}{10} |x-2| \lim_{n \to \infty} \frac{n}{n+1} = \frac{1}{10} |x-2|$, so this series converges absolutely when $|x-2| < 10$ or for $-8 < x < 12$.

Notice when
$$x = -8$$
, we have $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 10^n} (-10)^n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} (-1)^n = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges since it is the harmonic series.

Similarly, when
$$x = 10$$
, we have $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 10^n} \cdot 10^n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ which converges by the Alternating Series Test.

Hence, the interval of convergence is: (-8, 10] and the radius convergence is: R = 10.

10. Use a known series to find a power series in x that has the given function as its sum:

(a)
$$x \sin(x^3)$$

Recall the Maclaurin series for
$$\sin u = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}$$

Therefore,
$$\sin(x^3) = \sum_{n=0}^{\infty} (-1)^n \frac{(x^3)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{(x)^{6n+3}}{(2n+1)!}$$

Hence
$$x \sin(x^3) = \sum_{n=0}^{\infty} (-1)^n \frac{(x)^{6n+4}}{(2n+1)!}$$
.

(b)
$$\frac{\ln(1+x)}{x}$$

Recall the Maclaurin series for
$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

Therefore,
$$\frac{\ln(1+x)}{x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n+1}$$

(c)
$$\frac{x - \arctan x}{x^3}$$

Recall the Maclaurin series for
$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Therefore,
$$x - \arctan(x) = x - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n+1}$$

Hence
$$\frac{x - \arctan x}{x^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{2n+1}$$