1. The nth Term Test.

Application: Can be used on any series $\sum_{n=1}^{\infty} a_n$.

Conclusion: Allows us to conclude that the series **diverges** if $\lim_{n \to \infty} a_n \neq 0$.

Other Comments: If $\lim_{n\to\infty} a_n = 0$, then **NO** conclusion can be reached!

2. The Geometric Series Test.

Application: Can **only** be used on series of the form $\sum ar^n$.

Conclusion: Allows us to conclude that the series **converges** to $S = \frac{a}{1-r}$ if |r| < 1. The series **diverges** if $|r| \ge 1$.

Other Comments: Geometric series are one of the few series that we can find the sun of exactly. They are also useful in comparison tests for series whose form is similar to a geometric series.

3. The *p*-series Test.

Application: Can **only** be used on series of the form $\sum \frac{1}{n^p}$.

Conclusion: Allows us to conclude that the series **converges** if p > 1 and that he series **diverges** if $p \le 1$.

Other Comments: *p*-series are also useful in comparison tests for series whose form is similar to a *p*-series.

4. The Integral Test.

Application: Can only be used on a positive term series given by a function f(n) whose real valued analog f(x) is **positive**, continuous, and decreasing on $[1, \infty)$, and these conditions *must* be verified.

Conclusion: Allows us to conclude that the series **converges** if its related improper integral $\int_{1}^{\infty} f(x) dx$ converges and **diverges** if its related improper integral $\int_{1}^{\infty} f(x) dx$ diverges.

Other Comments: This test is useful in certain circumstances but is often not the easiest test to use.

5. The Basic Comparison Test.

Application: Can only be used on a positive term series $\sum a_n$ and a positive term comparison series $\sum b_n$ whose convergence or divergence is known and which satisfies the necessary inequality.

Conclusion: Allows us to conclude that the series $\sum a_n$ converges if $a_n \leq b_n$ for all n and $\sum b_n$ is known to converge. Similarly, $\sum a_n$ diverges if $a_n \geq b_n$ and $\sum b_n$ is known to diverge.

Other Comments: This test only useful if we can *prove* the necessary inequality comparing the given series with one whose behavior is well understood.

6. The Limit Comparison Test.

Application: Can only be used on a positive term series $\sum a_n$ and a positive term comparison series $\sum b_n$ whose convergence or divergence is known.

Conclusion: Allows us to conclude that the series $\sum a_n$ converges if $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$ and $\sum b_n$ is known to converge. Similarly, $\sum a_n$ diverges if $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$ and $\sum b_n$ is known to diverge.

Other Comments: This test only useful if we can compute the limit of the ratio of the two series and obtain a finite value. Especially useful for series that are similar to geometric or *p*-series.

7. The Ratio Test.

Application: Can be used on a positive term series $\sum a_n$ to show convergence, or on $\sum |a_n|$ to show absolute convergence of an alternating series.

Conclusion: Allows us to conclude that the series $\sum a_n$ **converges**(absolutely) if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, **diverges** if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ and is **inconclusive** if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$

Other Comments: This test is useful for series involving factorials or *n*th powers.

8. The Root Test.

Application: Can be used on a positive term series $\sum a_n$ to show convergence, or on $\sum |a_n|$ to show absolute convergence of an alternating series.

Conclusion: Allows us to conclude that the series $\sum a_n$ **converges**(absolutely) if $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$, **diverges** if $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1$ and is **inconclusive** if $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L = 1$

Other Comments: This test is useful for series involving nth powers.

9. The Alternating Series Test.

Application: Can be used on an alternating series $\sum (-1)^n a_n$ to show *conditional* convergence.

Conclusion: Allows us to conclude that the series $\sum_{n \to \infty} (-1^n) a_n$ converges(conditionally) if $a_k \ge a_{k+1}$ for every k and $\lim_{n \to \infty} a_n = 0$.

Other Comments: We must prove that the terms of the alternating series are non-increasing. Also, this test does not help us show that a series is divergent.