
Taylor’s Theorem

Recall: Given a function f(x) with derivatives of all orders at some point c

• The Taylor Series generated y f(x) centered at x = c is:
∞∑

k=0

f (k)(c)

k!
(x− c)k = f(c) + f ′(c)(x− c) +

f ′′(c)

2!
(x−

c)2 + · · ·+
f (n)(c)

n!
(x− c)n + · · ·

• The Taylor Polynomial of order n generated y f(x) centered at x = c is: Pn(x) = f(c) + f ′(c)(x − c) +

f ′′(c)

2!
(x− c)2 + · · ·+

f (n)(c)

n!
(x− c)n

Taylor’s Theorem: Suppose f and its first n derivatives are continuous on a closed interval [a, b] and differentiable
on the open interval (a, b). Then there exists a number z between a and b such that f(b) = f(a) + f ′(a)(b− a) +

f ′′(a)

2!
(b− a)2 + · · ·+

f (n)(a)

n!
(b− a)n +

f (n+1)(z)

(n+ 1)!
(b− a)n+1.

Taylor’s Formula: If a function f has derivatives of all orders in an open interval I containing a, the fro each

positive integer n and each x in I, f(x) = f(a)+ f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+ · · ·+ f (n)(a)

n! (x−a)n+Rn(x), where

Rn(x) =
f (n)(z)
(n+1)! (x− a)n+1 for some z between a and x.

Note: If Rn(x) → 0 and n → ∞, then we say that the Taylor Series generated by f at x = a converges to f in I.

Theorem: (Remainder Estimation) If there is a positive constant M such that |f (n+1)(t)| ≤ M for all t
between x and a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisfies the inequality:

|Rn(x)| ≤ M
|x− a|n+1

(n+ 1)!

If this inequality holds for every n and the other conditions of Taylor’s Theorem are satified by f , the the series
converges to f(x).

Example: Use the Taylor Series for f(x) = ex centered at x = 0 to approximate e to 3 decimal places of accuracy.

Recall that ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+ · · · +

xn

n!
+ · · · is the Mclaurin series for f(x) = ex. From this, using

Taylor’s theorem, the remainder term for this series is given by:

Rn(x) =
f (n+1)(z)

(n+ 1)!
(x− a)n+1. Setting x = 1 and noting that a = 0 and f (n+1)(x) = ex, we then have:

Rn(1) =
ez

(n+ 1)!
(1− 0)n+1 =

ez

(n+ 1)!
(1)n+1 =

ez

(n+ 1)!
.

Note that ex is a strictly increasing function, so it is maximized on the interval [0, 1] when z = 1. Hence
Rn(x) ≤

e
(n+1)! (since M = e).

Since we want our estimate to be to 3 decimal places, we need Rn(1) ≤ 0.0005. That is, we need e
(n+1)! < 0.0005.

So we must have e
0.0005 < (n+ 1)!.

Since we do not want to depend on an accurate value of e for this computation, let’s say e < 3, so finding n so
that (n+ 1)! > 3

0.0005 = 6000 is sufficient.

Note that 7! = 5, 040, and 8! = 40, 320, so we take n = 7.

Therefore, we can approximate e to 3 decimal places of acuracy by adding the first 7 terms of the series:

e ≈ 1 + 1 + 1
2 + 1

6 + 1
24 + 1

120 + 1
720 + 1

5040 = 685
252 ≈ 2.71825

So our estimate of e to three decimal places of accuracy is: 2.718.


