
Math 262 Calculus II Lab 18 Alternating Series & Absolute Convergence Name:

1. For each of the following series, determine whether the series converges or diverges.
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2. Estimate the sum of the following series to within two decimal places of accuracy
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3. Determine how many terms you would need in order to estimate the following sums to within .0001 (you do not need
to find an estimate)
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4. Determine whether each of the following series are absolutely convergent, conditionally convergent, or divergent:
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5. The following is a proof that 2=1. Consider the alternating harmonic series
∞
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. We know that this series

converges conditionally. Assume the sum of the series is S.

(a) Write out the first 14 terms of this series. We’ve done the first 3.

S = 1− 1
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(b) Multiply what you have in part (a) by 2 and simplify your fractions:

2S =

(c) Collect terms with the same denominator in part (b):

2S =

(d) Rearrange what you have in part (c) so that you have the series you began with:

2S = 1− 1

2
+

(e) Thus:

2S = S and dividing by S we get 2 = 1.

(f) We know that 2 6= 1. What does your work above tell you about conditionally convergent series?
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