Name:

1. For each of the following power series, find the interval of convergence and the radius of convergence of the series.

(a)
$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Interval of Convergence: _____

Radius of Convergence:

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

Interval of Convergence: _____

Radius of Convergence:

(c)
$$\sum_{n=1}^{\infty} \frac{10^{n+1}}{3^{2n}} x^n$$

Interval of Convergence:

Radius of Convergence: ________SHOW ALL WORK FOR CREDIT

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n} (2x-3)^n$$

Interval of Convergence:

Radius of Convergence: _____

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n \ln n} (x - \sqrt{2})^n$$

Interval of Convergence: _____

Radius of Convergence: _____

2. Recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ if |x| < 1. Use this fact to determine a series representation for the following. Find the radius of convergence for these.

(a)
$$\frac{1}{1-2x}$$
 (b) $\frac{1}{1+x^2}$ (c) $\frac{1}{3-5x}$

3. The series

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \cdots$$

converges to $\sin(x)$ for all real numbers x.

- (a) Use differentiation to find the first six terms of a series for $\cos(x)$.
- (b) Now, try finding a series for $\cos(x)$ by computing $-\int \sin(x) dx$.
- (c) Did you get the same answer? Explain what is going on.
- (d) Use the fact that $\cos(0) = 1$ to determine which of these is correct.

Power Series

Name:

- 4. We know that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for -1 < x < 1.
 - (a) Differentiate both sides, then multiply by x and find the interval of convergence for this new series.
 - (b) Use the result from part (a) to find the value of $\sum_{n=0}^{\infty} \frac{n}{2^n}$.
 - (c) Use the concept from parts (a) and (b) to find the value of $\sum_{n=0}^{\infty} \frac{n^2}{3^n}$.