- Name:
- 1. Find the exact value of each of the following.

(a)
$$\cos^{-1}(1)$$
 (d) $\tan^{-1}(\sqrt{3})$ (g) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ (j) $\sin^{-1}\left(-\frac{1}{2}\right)$

(b)
$$\sec^{-1}(2)$$
 (e) $\csc^{-1}\left(-\sqrt{2}\right)$
(h) $\cos^{-1}\left(\frac{1}{2}\right)$ (k) $\tan^{-1}(0)$

(c)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
 (f) $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$ (i) $\tan^{-1}(-1)$ (l) $\sin^{-1}(2)$

2. Find *exact* solutions to the following equation in the interval $[0, 2\pi)$. $2\cos^2(t) + 3\cos(t) + 1 = 0$

3. Approximate the solutions to the following equation in the interval $[0, 2\pi)$ to the nearest thousandth. $6\cos^3(x) + 18\cos^2(x) - 5\cos(x) - 15 = 0$ 4. Find the derivative of each of the following.

(a)
$$y = \sec^{-1}(5x^2 - 2)$$
 (c) $g(x) = \sin^{-1}(2x) + \sin(x^{-1}) + (\sin(2x))^{-1}$

(b)
$$f(x) = x^3 \cos^{-1}(x)$$
 (d) $y = \frac{\arctan(x)}{1+x^2}$

5. Evaluate the following integrals.

(a)
$$\int \frac{9}{x^2 + 4} dx$$
 (d) $\int \frac{7}{x\sqrt{x^2 - 25}} dx$

(b)
$$\int \frac{6x}{x^2 + 9} dx$$
 (e) $\int \frac{e^{3x}}{\sqrt{1 - e^{6x}}} dx$

(c)
$$\int \frac{2}{\sqrt{16 - x^2}} dx$$
 (f) $\int \frac{1}{x\sqrt{x^4 - 1}} dx$

6. Let R be the region in the first and second quadrants bounded above by the graphs of $y = \frac{4}{\sqrt{1+x^2}}$, y = 1, x = -1, and $x = \sqrt{3}$. Find the volume of the object created by revolving R around the x axis.

- 7. (From the 200? AP Calculus AB exam) A particle moves along the y-axis so that its velocity v at time $t \ge 0$ is given by $v(t) = 1 \tan^{-1} (e^t)$. At time t = 0, the particle is at y = -1.
 - (a) Find the acceleration of the particle at time t = 2.

(b) Is the speed of the particle increasing or decreasing at time t = 2? Give a reason for your answer. (Note: Speed is the absolute value of velocity.)

(c) Find the time $t \ge 0$ at which the particle reaches its highest point. Justify your answer.