Exercise 3.83. Find a matrix of the reflection that maps the line I[2, 3, —1] to m[2, 3, 5].

Method 1.
First, note that the axis of reflection must be p[2, 3, 2].
We find the point of intersection of line h and p, by applying Proposition 3.2.
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Hence, ~# +#; = 0. Thys, the point of intersection C is (-1, 0, 1).

The measure of the angle between lines h and p is:
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Hence, by Proposition 3.15,
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We check the solution by applying Proposition 3.6.
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The result checks when k = 1.



Method 2.
First, note that the axis of reflection must be p[2, 3, 2]. We apply Proposition 3.6 to find the
matrix of a direct isometry T that maps h[0, 1, 0] to p[2, 3, 2].

There is a nonzero real number k such that kpT = h.
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Which implies  *[2cos@+3sin8 -2sin8+3cos8 2a+35+2]=[0 1 0]
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Solving this system, using the fact that det(T) = 1, we obtain: k= Nk
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For a matrix of a direct isometry that maps line h to line I, we leta=2and b = -2,
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Hence, R, is defined by
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We check the solution by applying Proposition 3.6.
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The result checks when k = 1.



