A. Definition: An exponential function is a function of the form $f(x) = a^x$ for $0 < a < 1$ or $a > 1$. Note: a is called the **base** of the exponential function. As we will see, exponential functions have domain $(-\infty, \infty)$ and range $(0, \infty)$.

Note: The reason we exclude 0 and 1 as bases for exponential function is because $0^x = 0$ for and x, and $1^x = 1$ for any x , so these are just constant functions.

Notice that these functions are quite different from other functions we have looked at so far. Here, the *exponent* part of the expression defining the function is a variable.

Example 1: Let $f(x) = 3^x$. Then: (a) $f(0) = 3^0 = 1$

- (b) $f(2) = 3^2 = 9$
- (c) $f(-3) = 3^{-3} = \frac{1}{27}$ 27
- (d) $f(\frac{2}{3})$ $\left(\frac{2}{3}\right) = 3^{\frac{2}{3}} = \sqrt[3]{3^2} = \sqrt[3]{9} \approx 2.080084$

Graphs of exponential functions:

Facts:

(1) If $f(x) = a^x$ with $a > 1$, then f is an increasing function, and hence is a one-to-one function.

(2) If $f(x) = a^x$ with $0 < a < 1$, then f is a decreasing function, and hence is a one-to-one function.

Solving Basic Exponential Equations:

We can use the fact that exponential functions are one-to-one to solve various equations involving exponentials. This is because we can make use of the fact that if $a^{x_1} = a^{x_2}$, then $x_1 = x_2$.

Examples:

 $1.4^{2x-3} = 4^{5-x}$

Since $f(x) = 4^x$ is a one-to-one function, we can conclude that:

 $2x - 3 = 5 - x$, or $3x = 8$. Hence $x=\frac{8}{3}$ $\frac{8}{3}$. 2. $2^{4x-7} = 8^{2x-5}$ Since $8 = 2^3$, we can rewrite 8^{2x-5} as $(2^3)^{2x-5} = 2^{3(2x-5)} = 2^{6x-15}$. Then, as above, we know that $4x - 7 = 6x - 15$, or $8 = 2x$.

Hence $4 = x$.

Compound Interest

There are many practical applications for exponential functions. One of the most common is computing compound interest.

The Compound Interest Formula: When a principal amount P in invested at interest rate r which is compounded n times per year and remains invested for t year, the amount A that results is given by the formula $A = P(1 + \frac{r}{\cdot})$ n $\overline{\ }$ ^{nt}

Examples:

1. Suppose you put \$1000 in an account that pays 6% interest compounded monthly. How much money will be in the account 3 years later?

$$
P = 1000, r = 0.06, n = 12, \text{ and } t = 3, \text{ so } A = 1000 \left(1 + \frac{.06}{12}\right)^{(12)(3)} = 1000 \left(1.005\right)^{36} \approx \$1,196.68
$$

2. Now Suppose you put \$2000 in an account that pays 7% interest compounded daily. How much money will be in the account 5 years later?

$$
P = 2000, r = 0.07, n = 365, \text{ and } t = 5, \text{ so } A = 2000 \left(1 + \frac{.07}{365}\right)^{(365)(5)} \approx 2000 \left(1.000191781\right)^{1825} \approx $2838.04
$$

The Natural Exponential Function:

Definition: If we consider what happens to the base of our compound interest exponential term: $(1 + \frac{1}{n})$ as we compound more and more frequently.

As *n* gets bigger and bigger, $\left(1 + \frac{1}{n}\right)$ approaches an irrational number we call *e*, the base of the natural exponential function, $f(x) = e^x$.

Since $e \approx 2.7182818, 2^x < e^x < 3^x$.

Continuously Compounded Interest Using this new base, we can measure the accumulation of interest that is compounded "instantaneously" rather than only n times a year. We do so using the formula: $A = Pe^{rt}$, where P, A, r , and t are exactly as above.

Example: Suppose you invest \$1000 at 6% interest compounded continuously for 3 years. Then at the end of the 3 years, you will have: $1000e^{0.06(3)} \approx $1,197.22$

Notice that this is about 54 cents more that we had investing the same amount at the same interest rate but only compounded monthly.

Example: Suppose the population of a bacterial colony if given by the function $f(t) = 500e^{-0.87t}$ where t is in hours and $f(t)$ is in thousands of cells.

Then $f(0) = 500e^{-0.087(0)} = 500e^{0} = 500$, so there are initially 500,000 cells in the colony.

Similarly, $f(5) = 500e^{-0.087(5)} = 500e^{-0.435} \approx 323.632$, so after 5 hours, the population of the colony has been reduced to 323,632 cells.