Math 127 - College Algebra

Handout: Properties of Exponents and Radicals

A. Exponents

Definition: $a^n = a \cdot a$ (a multiplied by itself n times)

Properties:

1.
$$a^0 = 1$$

2.
$$a^{-n} = \frac{1}{a^n}$$

$$3. \ a^m \cdot a^n = a^{m+n}$$

4.
$$(a^m)^n = a^{mn}$$

5.
$$(ab)^n = a^n b^n$$

6.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

7.
$$\frac{a^m}{a^n} = a^{m-n} = \frac{1}{a^{n-m}}$$

8.
$$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$$

9.
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

B. Radicals:

Definition: Suppose n is a positive integer and a is a real number. Then we define the nth root of a, denoted by $\sqrt[n]{a}$ as follows:

- If a = 0, then $\sqrt[n]{a} = 0$.
- If a > 0 then $\sqrt[n]{a}$ is the positive real number b such that $b^n = a$.
- If a < 0 and n is **odd**, then $\sqrt[n]{a}$ is the negative real number b such that $b^n = a$.
- If a < 0 and n is **even**, then $\sqrt[n]{a}$ is not a real number, since there is no real number b such that $b^n = a$.

Examples:

(a)
$$\sqrt[2]{9} = \sqrt{9} = 3$$
 since $3 \cdot 3 = 9$.

(b)
$$\sqrt[3]{-8} = -2$$
 since $(-2) \cdot (-2) \cdot (-2) = -8$.

(c) $\sqrt{-16}$ is not a real number. (notice that $4 \cdot 4 = 16$, and $(-4) \cdot (-4) = 16$)

Properties:

1.
$$(\sqrt[n]{a})^n = a$$
 if $\sqrt[n]{a}$ is a real number.

$$2. \ \sqrt[n]{a^n} = a \text{ if } a \ge 0.$$

3.
$$\sqrt[n]{a^n} = a$$
 if $a < 0$ and n is odd.

4.
$$\sqrt[n]{a^n} = |a|$$
 if $a < 0$ and n is even.

5.
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$
 provided both exist.

6.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 provided both exist.

7.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$
 provided both exist.

Warning!!

(a) In general,
$$\sqrt{a^2 + b^2} \neq a + b$$

(b) Also, in general,
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

Exponents and Radicals:

1.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
.

2.
$$\sqrt[n]{a^m} = a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = (a^m)^{\frac{1}{n}}$$
.