Math 127 Inequalities

A. Interval Notation

Finite Intervals:

Interval	Inequality	Graph	
			_
Open: (a, b)	a < x < b	a b	
			_
Closed: $[a, b]$	$a \le x \le b$	a b	
		^	_
Half Open: $[a, b)$	$a \le x < b$	a b	
		· · · · · · · · · · · · · · · · · · ·	_
(a,b]	$a < x \le b$	a b	

Infinite Intervals:

Interval	Inequality	Graph
(a,∞)	a < x	⊕ > a
$[a,\infty)$	$a \leq x$	a
$(-\infty, b)$	x < b	→ D
$(-\infty, b]$	$x \leq b$	b

B. Properties of Inequalities

- 1. If a < b and b < c then a < c [Transitivity]
- 2. If a < b, then a + c < b + c [Additive Shift]
- 3. If a < b and c > 0, then ac < bc [Positive Multiplication]
- 4. If a < b and c < 0, then ac > bc [Negative Multiplication Inequality Reversal!]

C. Solving Inequalities

Our goal is to use the properties of inequalities and other algebraic techniques to find which real numbers satisfy a given inequality.

Examples:

1.
$$3 - 2x < 5$$

 $3 - 2x < 5$
 $-3 - 3$
 $-2x < 2$
 $\sqrt{-2} \sqrt{-2}$
 $x > -1$
2. $3 < 4 - 2x \le 12$
 $-4 - 4 - 4$
 $-1 < -2x \le 8$
 $\div -2 \div -2 \div -2$
 $\frac{1}{2} > x \ge -4$

3. $2x^2 - x - 6 > 0$ – for this one, we will need to use "sign analysis"

(2x+3)(x-2) > 0Solving the related linear equations: $2x+3=0 \rightarrow x=-\frac{3}{2}$ $x-2=0 \rightarrow x=2$

Therefore, the solution to this inequality is: $(-\infty, -\frac{3}{2}) \cup (2, \infty)$