- 1. Short Answer/Essay Questions:
 - (a) Explain the difference between an axiomatic system and a model.
 - (b) Which geometric model best describes the universe we live in?
 - (c) Give an example of an SMSG axiom that is *not* independent of the other axioms.
 - (d) Give an example of an SMSG axiom that is independent of the other axioms. Provide justification for your answer.
 - (e) How do we know that the Euclidean Parallel Postulate is Independent of the other axioms?
 - (f) Give the definition of an equivalence relation.
 - (g) Give the definition of an angle bisector.
- 2. For each of the following, provide an example of a model where the statement is true and an example of a model where the statement is false.
 - (a) There is a unique line between any pair of points.
 - (b) The ruler postulate holds.
 - (c) The SAS postulate holds.
 - (d) the AAA congruence theorem is true.
 - (e) The Plane Separation Postulate holds.
 - (f) Rectangles exist.
 - (g) Lines have infinite length.
 - (h) the sum of the measures of the angles in any triangle is 180
- 3. For each statement, determine whether the statement is true or false. Then briefly justify your answer. Assume each statement is being made about a neutral geometry (i.e. every postulates except the Euclidean parallel postulate holds).
 - (a) Parallel lines exist.
 - (b) If a line ℓ is perpendicular with distinct lines \overrightarrow{AB} and \overrightarrow{CD} , then the lines \overrightarrow{AB} and \overrightarrow{CD} are parallel.
 - (c) Given and 3 distinct collinear points, exactly one is between the other two.
 - (d) If $m(\angle BAC) = m(\angle BAD) + m(\angle DAC)$, then $D \in int(\angle BAC)$.
- 4. Determine whether or not the Missing strip plane satisfies the Euclidean Parallel Postulate.
- 5. Prove that a line segment has a unique midpoint.
- 6. Prove that triangle congruence is an equivalence relation.
- 7. Prove that the Missing Strip Plane does not satisfy Pasch's Postulate.
- 8. State and prove the AAS congruence theorem.
- 9. Prove that there are at least two lines that are parallel to each other.
- 10. Prove that the diagonals of a Saccheri quadrilateral are congruent.
- 11. Use the previous results along with the Theorem 2.18 and Euclid's 5th Postulate to prove that rectangles exist in a Euclidean geometry.

- 12. Prove each of the following Euclidean Propositions:
 - (a) If A and D are points on the same side of a line \overrightarrow{BC} and the line \overrightarrow{BA} is parallel to the line \overrightarrow{CD} then $m(\angle ABC) + m(\angle BCD) = 180$
 - (b) Every distinct pair of parallel lines have a common perpendicular.
 - (c) If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.
 - (d) The sum of the measures of any triangle is 180.
- 13. Provide the justification for each step in the following 2-column proof (you may assume all SMSG axioms except the Parallel Postulate).

Theorem (Exterior Angle Theorem): Any exterior angle of a triangle $\triangle ABC$ is greater than either of its remote interior angles.

Proof: $\triangle ABC$, let D be a point such that A-C-D (i.e. $\angle BCD$ is an exterior angle of $\triangle ABC$).

	,
1. Let M be the midpoint of segment \overline{BC} .	
2. Then $B - M - C$ and $\overline{BM} \cong \overline{MC}$.	
3. There is a point E on ray \overrightarrow{AM} such that $A - M - E$ and $ME = MA$.	
$4. \ \overline{ME} \cong \overline{MA}$	
5. $\angle AMB$ and $\angle EMC$ are vertical angles.	
$6. \ \angle AMB \cong \angle EMC$	
7. $\triangle AMB \cong \triangle EMC$	
8. $\angle ABC = \angle ABM \cong \angle ECM = \angle ECB$	
9. $m(\angle ABC) = m(\angle ECB)$	
10. E and D are on the same side of line \overrightarrow{BC}	
11. B, M and E are on the same side of line \overrightarrow{CD}	
12. $E \in int(\angle BCD)$	
13. $m(\angle BCE) + m(\angle ECD) = m(\angle BCD)$	
14. $m(\angle BCD) > m(\angle BCE) = m(\angle ABC)$	

The proof of the case for the other remote interior angle is similar \square .

14. Prove Theorem 2.15: If there is a transversal to two distinct lines with alternate interior angles congruent, then the two lines are parallel.