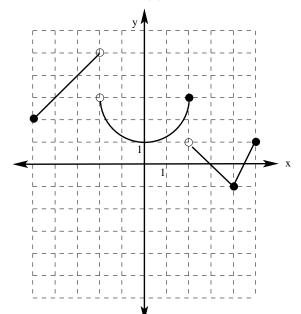
$\begin{array}{l} \text{Math 127 - Exam 2} \\ \text{Version 1} \\ 03/04/2015 \end{array}$

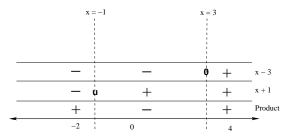
You MUST show appropriate work to receive credit

- 1. Solve the following inequalities. Express your answers in interval notation.
 - (a) (5 points) 5x (3x + 1) < 3(x 2)

Simplifying, we get 5x - 3x - 1 < 3x - 6, or 2x - 1 < 3x - 6


Moving terms to isolate x, we get -x < 5, or x > 5.

In interval notation, this is: $(5,\infty)$


(b) (7 points) $\frac{x-3}{x+1} \le 0$

Since this inequality has more than one term, to solve it, we must use either test points or a sign chart. Looking at the two factors, x - 3 and x + 1, the key values

2. For the given graph of f(x), find the following:

are x = 3 and x = -1. Using this, we construct the following sign chart:

Notice that we want all negative values, the demoninator cannot be zero, but the numerator can be zero. Thus the solution set is given by (-1,3].

- (a) (2 points) The y-intercept(s). (0, 1)
- (b) (2 points) f(4) f(4) = -1
- (c) (2 points) x, when f(x) = 3

x = -4 and x = 2(note when x = -2 there is an open circle)

- (d) (2 points) The domain of f is $[-5, -2) \cup (-2, 5]$
- (e) (2 points) The range of f is [-1, 5)
- (f) (3 points) The intervals where f is increasing are [-5, -2], [0, 2], and [4, 5].

Name:_

3. Let $f(x) = x^2 - 3x$ and $g(x) = \sqrt{x+1}$ Find the following:

(a) (3 points)
$$f(a+1)$$

 $= (a+1)^2 - 3(a+1) = a^2 + 2a + 1 - 3a - 3$
 $= a^2 - a - 2 = (a-2)(a+1)$
(b) (3 points) $(f-g)(2)$
 $= f(2) - g(2) = (4-6) - \sqrt{2+1}$
 $= -2 - \sqrt{3}.$

(c) (6 points) the domain of $\frac{g}{f}$ (in interval notation).

Notice that
$$\frac{f}{g}(x) = \frac{\sqrt{x+1}}{x^2 - 3x} = \frac{\sqrt{x+1}}{x(x-3)}.$$

Then, in order for the output to be defined, we need two things: we must have $x + 1 \ge 0$, and we cannot have x(x-3) = 0.

Then $x \ge -1$, and we cannot have x = 0 or x = 3. Combining these, the domain is: $[-1, 0) \cup (0, 3) \cup (3, \infty)$

- 4. Given the points A(3,5) and B(1,-3):
 - (a) (4 points) Find d(A, B) (if necessary, round your answer to 2 decimal places)

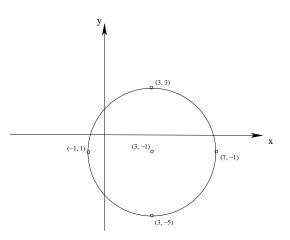
$$d(A,B) = \sqrt{(3-1)^2 + (5-(-3))^2} = \sqrt{2^2 + (8)^2} = \sqrt{4+64} = \sqrt{68} = 2\sqrt{17} \approx 8.25$$

(b) (4 points) Find the midpoint of the line segment containing A and B.

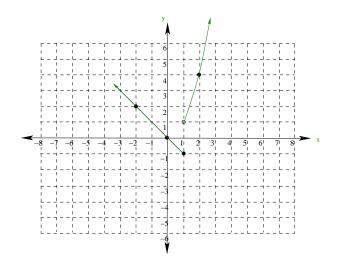
$$M = \left(\frac{3+1}{2}, \frac{5-3}{2}\right) = \left(\frac{4}{2}, \frac{2}{2}\right) = (2, 1)$$

(c) (4 points) Find the equation for the line containing A and B in slope intercept form.

$$m = \frac{5 - (-3)}{3 - 1} = \frac{8}{2} = 4.$$


Then, using point/slope, y - 5 = 4(x - 3), or y - 5 = 4x - 12.

Hence the equation for this line is: y = 4x - 7.


(d) (4 points) Find the equation for the line perpendicular to the line through A and B and containing the point (-1,2)

First, since we are looking for a line that is perpendicular to the line found above, we see that $m = -\frac{1}{4}$.

Then, using point/slope and the point (-1, 2), $y - 2 = -\frac{1}{4}(x + 1)$, or $y - \frac{8}{4} = -\frac{1}{4}x - \frac{1}{4}$. Hence the equation for this line is: $y = -\frac{1}{4}x - \frac{1}{4} + \frac{8}{4}$ or, simplifying, $y = -\frac{1}{4}x + \frac{7}{4}$. 5. (7 points) Find the center and radius of the circle with equation x² + y² - 6x + 2y - 6 = 0. Then graph the circle. We begin by completing the square on each quadratic in the equation: (x² - 6x + 9) + (y² + 2y + 1) = 6 + 9 + 1 Hence the equation for this circle is: (x - 3)² + (y + 1)² = 16, so this circle has center (3, -1) and radius r = 4. Therefore, this circle has the following graph.

6. (6 points) Draw the graph of the function $f(x) = \begin{cases} -x & \text{if } x \leq 1 \\ x^2 & \text{if } x > 1 \end{cases}$. Label your axes and at least 4 points on the graph.

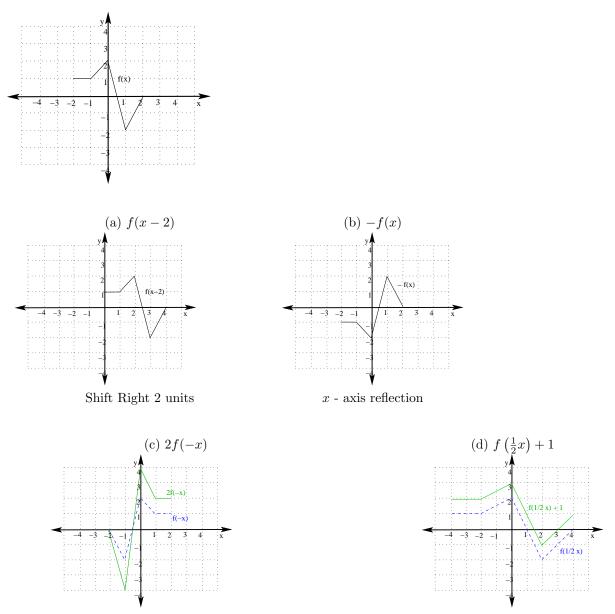
- 7. Given that $f(x) = \frac{1}{x}$ and $g(x) = \sqrt{3x-2}$
 - (a) (3 points) Find $(f \circ g)(2)$

$$f(g(2)) = f(\sqrt{4}) = f(2) = \frac{1}{2}$$

(b) (3 points) Find $(g \circ f)(1)$

$$g(f(1)) = g(1) = \sqrt{3(1) - 2} = \sqrt{1} = 1.$$

x	y = -x
-2	2
-1	1
0	0
1	-1
x	$y = x^2$
1	1
2	4
3	9


(c) (3 points) Find $(f \circ g)(x)$

$$f(g(x)) = f\left(\sqrt{3x - 2}\right) = \frac{1}{\sqrt{3x - 2}} = \frac{\sqrt{3x - 2}}{3x - 2}$$

(d) (4 points) Find the domain of $(f \circ g)(x)$ To find the domain, we note that in order for g(x) to be defined, we need $3x - 2 \ge 0$ and in order for f(x)to be defined, it's demoninator must be non-zero, so we need $g(x) \ne 0$. Then the domain is found by solving the inequality 3x - 2 > 0.

Then 3x > 2, or $x > \frac{2}{3}$. Therefore, using interval notation, the domain of $(f \circ g)(x)$ is: $\left(\frac{2}{3}, \infty\right)$.

8. (5 points each) Given the graph of f(x) shown below, use graph transformations to graph each of the following. Label at least 3 points on your final graphs.

x - axis reflection, the vertically stretch by a factor of 2 Horizontally stretch by a factor of 2, then up one unit.

- 9. In 1975, U.S. First Class postage cost \$0.10 per stamp. In 1985, the price of stamps had gone up to \$0.22
 - (a) (4 points) Find a linear function that gives the cost of First Class postage as a function of time in years since 1975.

Notice that x represents time in years since 1975. If we let y be the price of a first class stamp in cents (you could also choose dollars for your units as well, but using cents is a bit nicer), then we have the points (0, 10) and (10, 22).

Then $m = \frac{22 - 10}{10 - 0} = \frac{12}{10} = \frac{6}{5} = 1.2$, and the *y*-intercept is (0, 10).

Then we have the line y = 1.2x + 10, so our linear model is f(x) = 1.2x + 10.

(b) (4 points) Use your function to predict the cost of a First Class postage stamp today.

First notice that today, 2015, corresponds to x = 2015 - 1975 = 40.

Then, using out model, f(40) = (1.2)(40) + 10 = 48 + 10 = 58, so our model predicts that the cost of a first class stamp today is 58 cents.