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Solving Cubic Equations

with Curly Roots

o the casual observer, there appears to be
little difference between

X*+bx+c=0 (1)
and
X +Dbx+c¢=0. @)

But appearances can be deceiving. The first equa-
tion is immediately familiar to mathematics teach-
ers, who know that its solutions are given by the
quadratic formula as

—h NP —4c

2

A corresponding formula for cubics exists, but it is
much more complicated. Rare is the teacher who
can retrieve it from memory, obtaining a solution
to (2) as
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Moreover, although this “Cardano formula” always
yields at least one real solution, its calculation
sometimes requires extracting the cube root of a
complex number, an unavoidable complication.
Philosophically, this generalization from qua-
dratic to cubic equations follows an obvious path.
Because square roots provide solutions to quadrat-
ics, the impulse to use cube roots to solve cubic
equations is altogether natural. But a less natural
approach leads to a much more elegant result, giv-
ing a solution of (2) as

x = (=c/b) {b*/c2, 3)

where the notation {f represents the curly root of
t. As we shall see, curly roots and cube roots are
closely related, but curly roots are better suited to
the purpose of solving cubic equations.

The idea behind curly roots appears to have
been discovered independently by Nogrady (1937)
and Pettit (1947), although the terminology and
notation used here were introduced in Kalman
(2009). In a time when technology enables stu-
dents to create and manipulate functions and their
graphs, the study of functions such as curly root
becomes feasible in the modern curriculum.

THE DEFINITION OF CURLY ROOT
Let F(x) = x*/(1 - x) for x < 1. As indicated in
figure 1, F'is increasing on its domain and, hence,
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Fig. 1 The increasing function F(x) = x*/(1 - x) for x <1is
graphed.

is invertible. We define the curly root function to
be the inverse of F. That is, for any real x, {x is
defined by

y={x if and only if x = /(1 - y) where y < 1.
Defining the curly root in this way immediately

gives us its graph (shown in fig. 2) and the two
identities

F ({x) = x for all real x (4)
and
{F(x) =x forall x< 1. (5)

Although {x is not a familiar function, there is
nothing strange about the way it is defined. Con-
sider this analogous definition:

y="xif and only if x = 5 where y > 0.

The fact is that many familiar functions, including

Done o

3
Define Ax)=——|x<1
1-x

Fig. 2 The curly root function y = {x is graphed as the
inverse of F(x).

radicals and logarithms, are defined in terms of an
inverse function. Further, the curly root function
is easily defined, tabulated, graphed, and saved in
a calculator’s tool kit of functions (see figs. 3-5).
From these perspectives, the curly root function is
commonplace.

Before demonstrating how curly roots can be
used to solve cubic equations, we make some sim-
ple observations about the nature of the curly root
function.

PROPERTIES OF CURLY ROOT

We can obtain exact values of the curly root func-
tion using its definition as an inverse function, just
as we do for the square root or logarithm functions.
For example, since F(0) = 0, we know that {0 =0.
Similarly, F(-1) = -1/2, so {~1/2 = -1. One special
value with particular significance is {-27/4 = -3, as
we shall see later.

Other properties of the curly root can also be
inferred using its definition as an inverse. Consider
the following properties of F, as illustrated in
figure 1:

2| x)=curlyrootix/)

- - D
Define cwf)?'oof(xj-ﬁghl(solve(j(}‘:l-x,y)} 2 -1.76929
Done -1 -1.32472 0.2 %
‘10 10
; {-2? -3 0 0.
curiyrool —
4 1 0.682328
[ S 2 0770917 o )
3m] | 83 | =approx{curlyrootia3)) [«]*] 331
Fig. 3 A function equation with x- and y-val- Fig. 4 A table of curly root values is easily Fig. 5 The curly root function’s graph is
ues interchanged is solved for y to define the created. obtained directly from its definition.

curly root function on the TI-Nspire CAS.
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e It is differentiable on its domain, with F’(0) =0
and F’(x) > 0 for x # 0.

e It is increasing on its domain.

e F(x) — o0 as x — 1,s0 the graph has a vertical
asymptote at x = 1.

o F(x) > —c0as x — —oo.

e The graph is concave down for x < 0, is concave
up for x > 0, and has an inflection point at x = 0.

These observations are readily confirmed ana-
lytically using standard methods of calculus. They
lead, in turn, to corresponding properties of curly
root:

¢ It is differentiable for all x except x = 0, and the
derivative is positive wherever it is defined.

e It is increasing on its domain.

e {x — 1 as x — oo, so the graph has a horizontal
asymptote at y = 1.

e {x > —asx— —oo.

e The graph is concave up for x <0, is concave
down for x > 0, and has an inflection point at
x=0.

These characteristics contribute to our general
knowledge about the curly root function. As one
specific application, the fact that {x is an increasing
function tells us that it preserves inequalities. That
is, if u < v, then {u < {v.

SOLVING THE REDUCED CUBIC

The general form of a cubic equation is x° + ax*

+ px+ g =0, where a, p, and g are real constants.
The substitution x = z — a/3 always transforms this
equation to one with no quadratic term: 2°+ bz +c¢ =
0, a so-called reduced cubic equation. Consequently,
to find roots of all cubics, it is sufficient to find
roots of the reduced cubic. For the remainder of
this article, therefore, we consider only the reduced
cubic equation (2). Our immediate goal is to verify
that (3) yields a solution to (2). This is easy in
principle: Just substitute the proposed value of x
into the original equation and show that it yields a
solution. In practice, first deriving another identity
makes life a little simpler. From equation 4 and the
definition of F, we have

()
1-&x

for all x. Rearrangement produces
({x)'=x - x{x. (6)

Now let’s verify that x = (—¢/b){?/c? gives a solu-
tion to x* + bx + ¢ = 0. We must show that

=x
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[(=c/D)D?/ ) + b(=c/D){DP/c* + ¢ = 0.

In the first term, which can be rewritten as
(=c*/)[{P/2)°, we apply (6), obtaining

SNV /¢ = B 1 D3+ b(—c/D){D/ e + c.
Simplifying produces
—c+ PP/ + P/ + e

This is equal to 0, which is what we wished to
show.

Although this process confirms the validity of
(3), it sheds little light on how that formula was
discovered or how the idea of curly root might
have originated. A more revealing approach pres-
ents itself if we make a change of variables in (2).
For example, if we replace x with 2u, the equation
becomes

8u+2bu+c=0,

and dividing by 8 yields
w+lurloo
4 8

This process shows that we can transform one
reduced cubic equation to another with modified
coefficients. In fact, as the example suggests, replac-
ing x with su has the effect of dividing b by s*> and
dividing ¢ by s°. Of all the different versions of the
equation that we might form, is one simpler than
the rest?

One possibility is to make the coefficients b and
¢ equal. That is, choose s so that b/s* = ¢/s”. This can
be accomplished by taking s = ¢/b, so our substitu-
tion is x = cu/b. Then (2) is transformed into

3 3
u’+ ZZ—Z u+ i)—z =0

or, introducing a = b’/¢%, into u’ + au + a = 0. Here
we catch a glimpse of the function F. Rewriting the
equation so that « is isolated, we obtain

_ -t (w)

ek e RO

In terms of curly root, this means that -« = {a and,
hence, u = - {a. Now replacing a with »*/¢* and u
with bx/c, we can rederive the curly root solution
(8). Perhaps it was just such an analysis that first
revealed the significance of I for solving cubic
equations.
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Fig. 6 Computing curly roots is easy on the TI-84.
HOW MANY REAL ROOTS? AN EXAMPLE

Results such as the quadratic formula or the curly
root solution of the cubic have significance beyond
computing solutions to specific equations. They can
be manipulated algebraically to derive additional
results. As one example, let’s use (3) to determine
when a reduced cubic has only real roots.

Consider a reduced cubic p(x) = x° + hx + ¢ with
b, ¢ # 0. Let r be the root given by (3). That is, 7 =
(~¢c/b){b?/2. Since (x — r) must be a factor of p(x),
by dividing we obtain p(x) = (x - r)(x* + rx + 7> + D).
Thus, p has all real roots if and only if the quad-
ratic factor does. That, in turn, is determined by
the sign of the discriminant D=7* - 4(r*+ D) =
-37* — 4). In particular, we would like to derive
necessary and sufficient conditions for D to be
nonnegative.

First, because 7 is not 0, D = (-3r" — 4br)/r. Next,
since p(r) =0, 7’ =-br — ¢, and so D = (3¢ - br)/r=
3¢/r — b. Substituting r = (—¢/h){h?/c?, we have D =
-b(1 + 3/{B3/2). If b > 0, then 1*/c* > 0, so {I*/c% > 0.
In this case, D = -b(1 + 3/{l*/c?) < 0, and the cubic
has a unique real root. If h < 0, then D > 0 if and
only if (1 + 3/{l?/c%) = 0 or, equivalently, {5*/c* < -3.

Thus, the reduced cubic equation (2) has three
real roots if and only if {I*/c% < -3.

Further, because the curly root function is
increasing, {$%/¢? < -3 holds if and only if ’/c* <
-27/4. So we have shown that the reduced cubic
has all real roots exactly when b’/¢* + 27/4 < 0. This
inequality is algebraically equivalent to b°/27 + ¢*/4
<0, recognizable as the traditional discriminant
condition for the reduced cubic, with equality indi-
cating repeated roots.

We illustrate the use of curly roots for solving cubic
equations first with a T1-84 calculator and then
with a TI-Nspire CAS. Consider the equation
x*=3x-1=0. With b=-3 and ¢ = -1, one solution
to the equation is (-¢/b) {b?/¢?, so we need to com-
pute the curly root of -27. With a TI-84 calculator,
we define the inverse of the curly root function in
Y1 (see fig. 6a). In the MATH menu Solver option,
we enter 0 = YI(x) — (-27), since the curly root

of —27 is the x-value that satisfies this equation

(see fig. 6b). The TI1-84 Solver uses a modified
Newton’s method to find solutions of equations and
so depends on initializing the x-value to something
reasonably close to the solution. Setting x = 0 works
well (see fig. 6¢). Selecting ALPHA and then ENTER,
we get —5.638155724 as the curly root of 27 (see
fig. 6d). Because this is less than -3, the curly root
discriminant criterion tells us that there are three
real solutions. Finally, we calculate —(—1)/(-3)x in
the main window to get the curly root solution,

R =1.879385242, and verify that R is a solution
(see fig. 6e).

We hasten to point out that Solver, applied
directly to x* - 3x - 1 =0, yields all three solutions,
using x = -2, x=0, and x = 2 as initial values for X,
with the solution shown in figure 7. This raises
the question: Why bother with curly roots? One
answer is that the curly root formula leads to gen-
eral results about cubic equations, such as the curly
root discriminant criterion that we just applied.
Additional answers will be provided later.

Finding the curly root solution to x* - 3x - 1=0
with the TI-Nspire CAS is more straightforward.
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Fig. 7 SOLVER yields approximate solutions for equations.

Once the curly root function is defined (see fig. 3),
we simply enter the curly root formula (see

fig. 8a). The Nspire supplies an exact symbolic
solution whose approximate value agrees with what
was given by the TI-84. But the symbolic solution
compels the question: Where do those trigonomet-
ric functions come from?

Using basic trigonometric identities, we can
reduce the solution cos(27/9) + sin(27/9)(V3) to
2cos(n/9) or 2cos(20°). It is well known in the his-
tory of mathematics, thanks to the French mathema-
tician Vieta, that when x* + bx + ¢ = 0 has three real
solutions, then b < 0 and the three solutions have the
form pcos(r), pcos(r + 120°), and pcos(r + 240°),
where p =V-4b/3 and cos(3r) = (-c/2) N-27/p°
(Martin 1998). We verify the latter two solutions for
our particular equation (where p =2 and r = 20°) in
figure 8b, recognizing —2E 13 as essentially zero.

PUTTING CURLY ROOTS INTO
PERSPECTIVE: A HISTORICAL EXAMPLE
We intentionally chose x* — 3x - 1 =0 in the
example above. This equation is the result of sub-
stituting 8 = 20° and then cos(20°) = x/2 into the
trigonometric identity cos(36) = 4cos*(0) — 3cos(6).
The identity is used in the most common algebraic
proof that Euclidean straightedge and compass
constructions are not sufficient for trisecting a

60° angle. With modern methods, solving a cubic

can be reduced to trisecting an angle, a problem
from classical Greece that has inspired interest
right down to the present day (Dudley 1996).

Our curly root development echoes a histori-
cal solution of the trisection problem. The earliest
recorded mathematically defined curve that was not
part of a line or a circle was the quadratrix, a curve
apparently developed by Hippias (ca. 420 BCE)
specifically for dividing an angle into any number
of equal parts (Beckmann 1971, pp. 40-44). Like
the curly root function, the quadratrix curve can
be represented as an inverse function, y = Q'(x),
where Q(x) = xcot(x/2) for 0 <x <1 (see fig. 9).
This is the modern equivalent of Pappus’s defini-
tion of the quadratrix.

The quadratrix did not arise accidentally but,
like curly root, was designed with a specific use
in mind. In figure 9b, segment OC intersects the
quadratrix curve at D, and E is the foot of the
perpendicular from E on segment OI. The crucial
property of the quadratrix that allows it to be used
to easily partition any angle into any number of
equal parts is EO/IO = length(arc BQC)/length(arc
BQI). Thus, by trisecting the segment OE we can
construct the trisector of ZCOB.

This historical example makes the point that,
from earliest times, the “solving process” in math-
ematics has frequently involved defining functions
to help address specific problems. The narrative of

=X 1 1.879385242
— curlyrood -27)
2

3
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Fig. 8 Curly roots are verified using a TI-Nspire CAS.
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Fig. 9 The guadratrix curve is used to trisect arbitrary angles.

mathematics is replete with such examples, some
named but most unnamed. Those that have found
a place in the core mathematics curriculum are so
familiar that we take them for granted. Yet these
functions were developed and found application in
much the same way as their more exotic cousins,
such as the quadratrix, ultraradicals, and curly
roots. Indeed, our development of the curly root
closely resembles standard treatments of square
root and logarithmic functions. Each case involves
the inverse of one specific function (e.g., y = x%,
y=c",ory=x"/(1-x)). And just as square roots
permit the solution of any quadratic equation and
logarithms the solution of any exponential equa-
tion, so too curly roots permit us to solve any cubic
equation. Following an analogous development, can
you invent a function for solving equations such as
2" = 3x +4? (See Kalman 2001).

THE SOLVING PROCESS

Great value is placed on numerical answers to
computational questions in the mathematics cur-
riculum. However, if the goal is only to have our
students think of the “solving” process as finding
numerical answers, then we could certainly use
the TI-84 Solver to replace most procedures cur-
rently taught for solving equations. But our goals
are much broader. In addition to understanding
some basics of solving equations, we want students
to develop a sense of the solving process, the role
that functions play in this process, and why some
functions that they encounter in the curriculum
are deemed important. In short, we want students
to embrace creating their own functions, thinking
with functions, and even giving them names—like
the curly root.
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