Name:_

Postulate 15:(The SAS Postulate) Given a one-to-one correspondence between two triangles (or between a triangle and itself). If two sides and the included angle of the first triangle are congruent to the corresponding parts of the second triangle, then the correspondence is a congruence.

Definitions:

- An isosceles triangle is a triangle with two congruent sides. If the isosceles triangle has exactly two congruent sides, the angles opposite the two congruent sides are called **base angles**, the angle formed by the two congruent sides is called the **vertex angle**, and the third noncongruent side is called the **base**.
- An equilateral triangle is a triangle with all sides congruent. A scalene triangle has no congruent sides.
- 1. Draw and appropriately label a triangle of each of the different types defined above.

Theorem 2.10:(Pons Asinorum) The base angles of an isosceles triangle are congruent.

Proof: Let $\triangle ABC$ be an isosceles triangle with $\overline{AB} \cong \overline{AC}$. Since every angle has a unique angle bisector, let the ray \overrightarrow{AD} be the bisector of $\angle BAC$. By the Crossbar Theorem, ray \overrightarrow{AD} and segment \overline{BC} intersect at a unique point E and B - E - C. Thus $\angle BAE = \angle BAD \cong \angle CAD = \angle CAE$. Since congruence of segments is an equivalence relation, $\overline{AE} \cong \overline{AE}$. Hence, by the SAS Postulate, $\triangle ABE \cong \triangle ACE$. Thus $\angle CBA = \angle EBA \cong \angle ECA = \angle BCA$. Therefore, the base angles of an isosceles triangle are congruent. \Box .

2. Draw a diagram that illustrates the steps in the proof of Theorem 2.10.

3. Find specific examples that demonstrate that the SAS Postulate is not satisfied by the Taxicab Plane.

- Two lines are **parallel** if and only if they do not intersect.
- Given $\triangle ABC$, if A C D, then $\angle BCD$ is an exterior angle of $\triangle ABC$ Also, $\angle BAC$ and $\angle ABC$ are called remote interior angles.
- Given line \overrightarrow{AB} , line \overrightarrow{DE} , and line \overrightarrow{BE} such that A B C, D E F, and G B E H where A and D on the same side of line \overrightarrow{BE} , then line \overrightarrow{BE} is called a **transversal**. Angles $\angle ABE$ and $\angle FEB$ (also $\angle CBE$ and $\angle DEB$) are called **alternate interior angles**.
- 4. Draw a diagram that illustrates an exterior angle and the remote interior angles of a $\triangle ABC$.

5. Draw a pair of lines \overrightarrow{AB} and line \overrightarrow{DE} , along with a transversal line \overrightarrow{BE} satisfying the definition given above. You should also label a pair of alternate interior angles.

6. Draw a diagram illustrating the steps in the following proof of Theorem 2.11 (use the space to the right of the proof outline).

Theorem 2.11:(The Exterior Angle Theorem) Any exterior angle of a triangle is greater in measure than either of its remote interior angles.

Proof Outline: Let $\triangle ABC$ be given. Let *D* be a point such that A - C - D, and thus $\angle BCD$ is an exterior angle of $\triangle ABC$.

- 1. Let M be a midpoint of segment \overline{BC} .
- 2. B M C and $\overline{BM} = \overline{MC}$
- 3. There is a point E on ray \overrightarrow{AM} such that A M E and ME = MA.
- 4. $\overline{ME} \cong \overline{MA}$.
- 5. $\angle AMB$ and $\angle EMC$ are vertical angles.
- 6. $\angle AMB \cong \angle EMC$
- 7. $\triangle AMB \cong \triangle EMC$
- 8. $\angle ABC = \angle ABM \cong \angle ECM = \angle ECB$.
- 9. $m(\angle ABC) = m(\angle ECB).$
- 10. E and D are on the same side of \overrightarrow{BC} .
- 11. B, M, and E are on the same side of \overrightarrow{CD} .
- 12. $E \in int(\angle BCD)$.
- 13. $m(\angle BCE) + m(\angle ECD) = m(\angle BCD)$
- 14. $m(\angle BCD) > m(\angle BCE) = m(\angle ABC)$
- 15. The proof of the case for the other remote interior angle is similar. \Box .