Math 487 - Foundations of Geometry Day 20 Group Assignment

Name:.

Transformational Geometry

In Chapter 2, we looked exclusively at static objects (objects that are fixed in one position). In this chapter, we will take a more dynamic approach. We will consider the idea of moving one object onto another similar object. The concept of a transformation is a function that maps a set onto another set. In some sense, motion is introduced using one-to-one and onto functions, called transformations.

1. Draw the result after performing each indicated transformation on the figure given below.

	\square		É	_						
				3						
		7		1						
		6		_						
+	-3	\geq	 \vdash	_	7	K	3			-
+	\square		A	Z_{3}						
+										
	\vdash									

(a) Rotation 90° Counterclockwise

				+			-
			• I -				
		<u> </u>					Г
							-
++		\vdash		++-	\vdash	\vdash	-
			3				
		\vdash		++-	\vdash	\vdash	⊢
							L_
	1 1			1 P			1
\vdash		\vdash		H	\vdash		┝
							F
	->		-3				
	->		-3				

(d) Reflection across the y-axis

			<u> </u>	-	-	-	-	_	_	-	_	-	
			1.1	<u>ا</u>									
			1 *										
		_	-	-				-	-		_		
			-	-		-	-	-	-		-	-	
				-									
LΤ			1	Ľ									
		-	-	-							-		
			-								_		
												.	
	-						5				,		
	+	-	-	-				-	-		-		
			1					1					
			Г										
	-	-	-	-3				-	-		-		
		-	-	-				-	-		-		

- (b) Rotation by 180°
- (e) Translation by the vector $\langle 3, 0 \rangle$

_						
		- "				
	+++		++	\vdash	\vdash	++
		1 1				
	+++		++-	\vdash	\vdash	
						⊢⊢►
	-8			₽ I		11
					\vdash	++-
	+++		+	\vdash	\vdash	++
		T	LΤ			LΓ

(c) Reflection across the x-axis

5											
				- 1							
1											
1											
1											
					,						
1											-
			8				60			,	
1		H	H	H		H	H	H			
	_										_
					-3						
					3					_	

(f) Translation by the vector $\langle -2, 2 \rangle$

					7								
					Ľ								
						,							
													-
			8					60				,	
-	\vdash	\vdash	\vdash	\vdash	H	_	\vdash				\vdash		
_						_		_	_	_	_	_	_

Definitions:

- A mapping (or function $f : A \to B$) of a set A into a set B is a rule that pairs each element of A with exactly one element of a subset of B. The set A is called the **domain**, the set B is called the **co-domain**, and the set of all elements of B (a subset of B) that are paired with an element from A is called the **range**.
- A mapping f from A to B is **onto** B if for any $b \in B$ there is at least one $a \in A$ such that f(a) = b.
- A mapping $f: A \to B$ is **one-to-one** if each element of the range of f is the image of exactly one element from A.
- A transformation is a one-to-one mapping of a set A onto a set B.
- A transformation of a plane is a transformation that maps points of the plane onto points in the plane.
- A nonempty set G is said to form a group under a binary operation *, if it satisfies the following conditions:
 - If A and B are in G, then $A \star B$ is in G. (The set is **closed** under the operation, **closure**.)
 - There exists an element $I \in G$ such that for every element $A \in G$, $I \star A = A \star I = A$. (The set has an identity.)
 - For every element $A \in G$, there is an element $B \in G$ such that $A \star B = B \star A = I$, denoted A^{-1} . (Every element has an **inverse**.)
 - If $A, B, C \in G$, then $(A \star B) \star C = A \star (B \star C)$. (the operation \star is associative)

Theorem 3.0: The set of transformations of a plane is a group under composition.

Proof Outline: The result follows from the following:

- The composition of two transformations of a plane is a transformation (Exercise 3.4).
- The inverse of a transformation is a transformation (Exercise 3.5).
- The identity function is a transformation and composition of functions is associative (Exercise 3.5).

2. Determine whether or not the mapping $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x-3}{2}$ is a transformation.

3. Determine whether or not the mapping $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is a transformation.

4. Determine whether or not the mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (2x, 3y) is a transformation.

5. Prove the composition of two transformations of a plane is a transformation of the plane.