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An Analytic Model of the Euclidean Plane

Our goal in this section is to find a way to define transformations of the Euclidean Plane in a “nice” matrix form. We will
do so by modifying the model we used in Chapter Two. Our new model is motivated by the standard equation for a line in
the Euclidean plane: ax+ by + c = 0 where a and b are not both zero. We can rewrite this equation as the matrix equation:
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where a and b are not both zero.

Since the coefficients a, b, and c define the line, the row matrix [a, b, c] represents the line and the column matrix [x, y, 1]T

(the superscript T indicates the transpose of the matrix) represents the points that satisfy the equation. Hence, for this
model a line is defined by an ordered triplet or row matrix [a, b, c] and a point is defined by an ordered triplet or column
matrix, [x, y, 1]T . In order to make it easier to write, we will denote a point by (x, y, 1) = [x, y, 1]T .

One significant problem with the representations used in this model is that lines do not have a unique form. Notice that the
two equations 2x+3y+5 = 0 and 6x+9y+15 = 0 describe the same line. In fact, all equations of the form 2kx+3ky+5k = 0,
where k is a nonzero real number, describe the same line as 2x+ 3y + 5 = 0.

To account for this, we must define the equivalence relation
[a1, a2, a3] ∼ [b1, b2, b3], if bi = kai, i = 1, 2, 3 for some k 6= 0

With this in mind, we will modify the above definition of a line to be the equivalence class of ordered triples (row matrices)
of the form [a1, a2, a3] where a1 and a2 are not both zero.

Since the representations of lines and points are motivated by a homogeneous matrix equation, we call the row matrix
[a1, a2, a3], the homogeneous coordinates of a line, and the column matrix (x1, x2, 1), the homogeneous coordinates

of a point.

1. Consider the line y = − 2

3
x+ 1

6
.

(a) Find three different homogeneous coordinate representations of this line. At least one representation must consist
of all integer entries. At least one must have 1 as one of its entries.

(b) Find two points that are on this line and express them in homogeneous coordinate form.

(c) Use matrix multiplication on homogeneous coordinates to show that both points are contained in the given line.



We summarize the definitions of the terms point, line, and incident for this model of the Euclidean plane as follows.

point A column matrix denoted by (x1, x2, 1).
line An equivalence class of row matrices [a1, a2, a3] where a1 and a2 cannot both be zero.
incident A point X(x1, x2, 1) is incident with a line ℓ[ℓ1, ℓ2, ℓ3] iff ℓX = 0.

What happens with this model when three distinct points are collinear? Let (x1, x2, 1), (y1, y2, 1), and (z1, z2, 1) be three
distinct collinear points. Since the points are collinear, there is a line [a1, a2, a3] that all three points satisfy, i.e.,
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or
a1x1 + a2x2 + a3 = 0
a1y1 + a2y2 + a3 = 0
a1z1 + a2z2 + a3 = 0

or

[

a1 a2 a3
]
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 =
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0 0 0
]

From linear algebra, a homogeneous equation has a nontrivial solution [a1, a2, a3] if and only if
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We have proven one direction of the following theorem (completing Exercise 3.17 would complete the proof).

Proposition 3.1: Three distinct points (x1, x2, 1), (y1, y2, 1), and (z1, z2, 1) are collinear iff the determinant
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Note: Proposition 3.1 implies a line through two distinct points (a1, a2, 1), and (b1, b2, 1) may be written as
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Recall: A set of lines is concurrent if the lines have a common point of intersection.

Proposition 3.2: Three distinct lines ℓ, m, and n are all concurrent or all parallel iff the determinant
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Note that Proposition 3.2 implies that a point on two distinct lines [p1, p2, p3], and [q1, q2, q3] may be found from the equation
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= 0 where ℓ represents an arbitrary unknown line.

Example: Find the point of intersection of lines [1, 1, 1] and [2, 1,−1].
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= 0 iff −2ℓ1 + 3ℓ2 − ℓ3 = 0 iff 2ℓ1 − 3ℓ2 + ℓ3 = 0 iff
[
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.

Hence the point of intersection is (2,−3, 1).

Note: The third position of the point in this model must be a one. If it is not a one, then form the equivalent column matrix
that has a one in the third position.

2. Select two non-parallel (and non-vertical) lines. Represent them using homogeneous coordinates. Use the matrix
method demonstrated above to find their point of intersection. Then, verify this result using algebra.


