Name:___

Computing Distance in our Analytic Model: The formula for the distance between two points $P(x_1, y_1, 1)$ and $Q(x_2, y_2, 1)$ is the usual Euclidean distance formula: $d(P, Q) = \sqrt{(x_1 - x_2)^2 - (y_1 - y_2)^2}$.

Computing Angle Measure: To determine how to compute the measure of the angle between two lines $p[p_1, p_2, p_3]$ and $q[q_1, q_2, q_3]$, we consider the following.

Let $\theta = \alpha - \beta$, where α and β are the measures of the angles formed by the x-axis and the lines p and q respectively (see the diagram below).

Recall that the slopes of lines through the origin can be described using tangent: $\tan \alpha = -\frac{q_1}{q_2}$ and $\tan \beta = -\frac{p_1}{p_2}$. From this, we use the standard trigonometric identity for tangent of the difference of two angles to obtain:

$$\tan \theta = \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{-\frac{q_1}{q_2} + \frac{p_1}{p_2}}{1 + \frac{q_1}{q_2} \cdot \frac{p_1}{p_2}} = \frac{p_1 q_2 - p_2 q_1}{p_2 q_2 + p_1 q_1}$$

Therefore, the angle between two lines p and q is given by $m(\angle(p,q)) = \tan^{-1}\left(\frac{p_1q_2 - p_2q_1}{p_2q_2 + p_1q_1}\right)$, where $-\frac{\pi}{2} < m(\angle(p,q)) < \frac{\pi}{2}$, if $p_1q_1 + p_2q_2 \neq 0$ and $m(\angle(p,q)) = \frac{\pi}{2}$ if $p_1q_1 + p_2q_2 = 0$. Note that this method works for any pair of lines, not just lines through the origin.

1. Find the angle between the lines [1, -2, -2] and [3, -1, -6].

Affine Transformation of the Euclidean Plane

Our next goal is to investigate the form of a transformation matrix in our model. Let $A = [a_{ij}]$ be a transformation matrix on our model of the Euclidean plane and let (x, y, 1) be any point in the Euclidean plane. Then we have:

a_{11}	a_{12}	a_{13}	$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} a_{11}x + a_{12}y + a_{13} \end{bmatrix}$
a_{21}	a_{22}	a_{23}	y	=	$a_{21}x + a_{22}y + a_{23}$
a_{31}	a_{32}	a_{33}	$\lfloor 1 \rfloor$		$\begin{bmatrix} a_{31}x + a_{32}y + a_{33} \end{bmatrix}$

- 2. Note that the final matrix in the equation above must represent a point in the Euclidean plane, so we must have $a_{31}x + a_{32}y + a_{33} = 1$ for every point (x, y, 1) in the Euclidean plane.
 - (a) Set (x, y, 1) = (0, 0, 1) in the equation above. What does this allow you to conclude about a_{33} ? Substitute this value into the transformation matrix.

(b) Set (x, y, 1) = (0, 1, 1) in the equation above. What does this allow you to conclude about a_{32} ? Substitute this value into the transformation matrix. (c) Set (x, y, 1) = (1, 0, 1) in the equation above. What does this allow you to conclude about a_{31} ? Substitute this value into the transformation matrix.

This motivates the following definition.

Definition: An affine transformation of the Euclidean plane, T, is a mapping that maps each point X of the Euclidean plane to a point T(X) of the Euclidean plane defined by T(X) = AX where det(A) is nonzero and

 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \hline & & & \\ \hline \end{bmatrix}.$ where each a_{ij} is a real number.

(d) Fill in the missing row of numbers in this definition based on your work above.

Proposition 3.3: An affine transformation of the Euclidean plane is a transformation of the Euclidean plane.

3. What would we need to show in order to prove Proposition 3.3? [We may circle back and prove this later...]

Proposition 3.4: The set of affine transformations of the Euclidean plane form a group under matrix multiplication. Proof Sketch.

4. What matrix serves as the identity element, and how do we know this matrix represents a transformation?

5. Show that the product of two transformations is a transformation.

6. How do we know that every transformation has an inverse?