Math 487 - Foundations of Geometry Day 25 Group Assignment

Name:_

Recall:

• An affine transformation of the Euclidean plane, T, is a mapping that maps each point X of the Euclidean plane to a point T(X) of the Euclidean plane defined by T(X) = AX where det(A) is nonzero and $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$. where

each a_{ij} is a real number.

- A transformation which preserves distance between points is an **isometry**.
- Proposition 3.7 An affine transformation of the Euclidean plane is an isometry is and only if its matrix representation is:

 $\begin{bmatrix} \cos\theta & -\sin\theta & a\\ \sin\theta & \cos\theta & b\\ 0 & 0 & 1 \end{bmatrix} \text{ (direct isometry)} \begin{bmatrix} \cos\theta & \sin\theta & a\\ \sin\theta & -\cos\theta & b\\ 0 & 0 & 1 \end{bmatrix} \text{ (indirect isometry)}$

Our next goal is to understand more about the matrix form of isometries in our analytic model.

Definition: A translation through a vector \overrightarrow{PQ} is a transformation of a plane, denoted T_{PQ} , such that if T_{PQ} maps X to X', then the vector $\overrightarrow{XX'} = \overrightarrow{PQ}$.

Definition: A rotation about a point C through an angle with measure θ , denoted $R_{C,\theta}$, is a transformation of a plane where C is mapped to itself and for any point X distinct from C if $R_{C,\theta}$ maps X to X', then d(X', C) = d(X, C) and $m(\angle XCX') = \theta$. C is called the **center** of the rotation.

Note: By convention, the angle θ is considered to be a counter-clockwise rotation. Also, angle measure is extended to any real number value by use of the Supplement Postulate and Angle Addition Postulate. For example, a 210° angle can be formed by taking the sum of a 30°, a 150°, and another 30° angle.

Definition: A transformation f is a symmetry of a point set if and only if the point set is invariant under the transformation.

1. Draw the resulting image after applying each given transformation to the given geometric figure.

-		F	Ļ		F	F	F	F		F	F	F
+			F		F		F			F		F
+		E	L,	B(0	3)							
			K	È	Þ					E		
+	A(-2,0	K	H	0	\vdash		Þ	C((0)	-		┝
+		F	Γ	D(I	0,-2)	F	F			F		F
1		F			F					F		
	\vdash	-	-	-	\vdash	-	-	\vdash	-	-	-	-

(a) T_{AB}

(b) T_{CD}

(c) $R_{O,90}$

(d) $R_{D,270}$

2. For each given isometry, draw an example of a collection of points that is invariant under that isometry.

(a) T_{AD} (b) $R_{O,180}$

Theorem 3.11: A translation of a Euclidean plane is an isometry.

Proof: Let T_{PQ} be a translation of a Euclidean plane. Let X and Y be two distinct points in the plane and $X' = T_{PQ}(X)$ and $Y' = T_{PQ}(Y)$. By the definition of a translation, \overline{PQ} , $\overline{XX'}$, and $\overline{YY'}$ are congruent and parallel. Two cases are possible: either X, X', Y, and Y' are not collinear or they are collinear.

Case 1: Assume X, X', Y, and Y' are not collinear. Since $\overline{XX'}$, and $\overline{YY'}$ are congruent and parallel, the quadrilateral $\Box XX'Y'Y$ is a parallelogram. Hence, XY = X'Y'.

Case 2: Assume X, X', Y, and Y' are collinear. Suppose the points are in the order X, Y, X', Y'. Then, by betweenness of points and substitution, XY = XX'YX' = YY'X'Y = X'Y'. The subcases for other orders of the points are similar.

In both cases XY = X'Y' for any two distinct points X and Y. Therefore, T_{PQ} is an isometry. \Box

Theorem 3.12: A nonidentity translation has no invariant points.

Theorem 3.13: The set of translations of a plane is a group under composition.

Theorem 3.14: There exists a unique translation mapping X to Y for any two distinct points X and Y in a Euclidean plane.

Theorem 3.15: Let P and Q be two distinct points in a Euclidean plane. Line \overrightarrow{PQ} and all lines parallel to line \overrightarrow{PQ} are invariant under the translation T_{PQ} . No other lines are invariant.

Theorem 3.16: A rotation of a Euclidean plane is an isometry.

Note: Take a few moments to read the proofs of Theorems 3.15 and 3.16 given in your textbook.

Theorem 3.17. A nonidentity rotation has exactly one invariant point.

Theorem 3.18. The set of rotations with center C of a plane is a group under composition.

Proposition 3.13. (a) An affine translation of the Euclidean plane is a direct isometry. (b) Any affine direct isometry of the Euclidean plane with no invariant points is a translation. (c) The matrix representation of an affine translation of the

Euclidean plane T_{PQ} , defined by vector $\overrightarrow{PQ} = (a, b, 0)$, is $\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$

Proposition 3.14. (a) An affine rotation of the Euclidean plane is a direct isometry. (b) Any affine direct isometry of the Euclidean plane with one invariant point is a rotation. (c) The matrix representation of an affine rotation of the Euclidean plane with center O(0, 0, 1) is $\begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

(d) The matrix representation of an affine rotation of the Euclidean plane with center C not at O is $R_{C,\theta} = T_{OC} \circ R_{O,\theta} \circ T_{OC}^{-1}$

- 3. Given P(-2,2), Q(2,2), O(0,0), and R(2,6)
 - (a) Find the matrix for a translation that maps P to Q. (b) Find the matrix for a rotation that maps P to Q.

(c) Find a matrix representation for a rotation that maps Q to R (You may express this as a product of matrices).