Name:

Recall: The Axiomatic System for a Finite Projective Plane:

Undefined Terms: point, line, incident **Defined Term:** Points incident to the same line are *collinear*. **Axioms:**

- Axiom P1: For any two distinct points, there is exactly one line incident with both points.
- Axiom P2: For any two distinct lines, there is at least one point incident with both lines.
- Axiom P3: Every line has at least three points incident with it.
- Axiom P4: There exist at least four distinct points of which no three are collinear.

Definition: A **projective plane of order** n is a geometry that satisfies the above axioms for a finite projective plane and has at least one line with exactly n + 1 (n > 1) distinct points incident with it.

Theorem P2: In a projective plane of order n, there exists at least one point with exactly n + 1 distinct lines incident with it.

Proof:

By the definition of a projective plane of order n, there exists a line ℓ with exactly n + 1 points incident to it, call these points P_1, P_2, \dots, P_{n+1} . By Axiom P4, there is a point Q not incident with ℓ . By Axiom P1, there must be lines $QP_1, QP_2, \dots, QP_{n+1}$. We need to show these lines are distinct and that there are no other lines through Q.

1. Use proof by contradiction and axiom P1 to prove that if $i \neq j$, then $QP_i \neq QP_j$.

To complete the proof, it remains to show that these n + 1 lines are the only lines incident to Q. To see this, suppose that m is a line that is incident to Q. By axiom P2, m and ℓ must be incident at some point R. Since R is incident to ℓ , $R = P_i$ for some i. Hence, by axiom P1, $m = P_i$. \Box .

2. State and prove the dual of axiom P1.

Theorem P3: In a projective plane of order n, every point is incident with exactly n + 1 lines.

Proof:

Let P be a point in a projective plane of order n. By the definition of a projective plane of order n, there exists a line ℓ with exactly n + 1 points incident to it, call them $P_1, P_2, ..., P_{n+1}$. We have two possible cases: either P is incident to ℓ or P is not incident to ℓ .

Case 1: Suppose *P* is *not* incident to ℓ . The proof of this case follows immediately from the proof of Theorem *P*2, taking Q = P. Hence, in this case, *P* is incident with exactly n + 1 lines.

Case 2: Suppose P is incident to ℓ . Then $P = P_i$ for some $i \in \{1, ..., n+1\}$.

Note: Our strategy will be to show that there is a line m satisfying: P is not incident with m and m has n+1 distinct points, which will allow us to apply Case 1.

By Axiom P4, these must be distinct points Q and R both not incident with ℓ . By Axiom P1 and Axiom P3, the lines RP_1 , RP_2 , and RP_3 all exist. Furthermore, since R is not on ℓ , by Axiom P1, P is not incident to at least two of the three lines RP_1 , RP_2 , and RP_3 . By axiom P1, Q is not incident to at least two of the three lines RP_1 , RP_2 , and RP_3 . By axiom P1, Q is not incident to at least two of the three lines RP_1 , RP_2 , and RP_3 . Thus at least one of the lines RP_1 , RP_2 , and RP_3 has neither P nor Q incident with it.

Since Q is not on ℓ , using Case 1, Q is incident to exactly n+1 lines: m_1, m_2, \dots, m_{n+1} . By the Dual of Axiom P1, each line m_j intersects m at exactly one point S_j for $j = 1, 2, \dots, n+1$. These n+1 points must be distinct. Otherwise, if $S_j = S_k$ for some $j \neq k$, then $m_j = QS_j = QS_k = m_k$ for $j \neq k$, which contradicts the fact that m_1, m_2, \dots, m_{n+1} are all distinct. Moreover, the n+1 points S_1, S_2, \dots, S_{n+1} are the only points on m. Otherwise, there would be another point T on m distinct from the n+1 points S_1, S_2, \dots, S_{n+1} , but then an (n+2)nd line $QT \neq m_j, j = 1, 2, \dots, n+1$, would intersect the line m, which contradicts the fact Q is incident to exactly n+1 lines. Hence, there are exactly n+1 points on m. Therefore, P is not on m and m contains exactly n+1 points. Thus, we may apply Case 1 to conclude that P is incident with exactly n+1 lines.

By Cases 1 and 2, every point in a projective plane of order n is incident with exactly n + 1 lines. \Box

3. Create diagrams that help illustrate the constructive arguments in Case 2 of the proof above.

4. Prove the dual of axiom P4 (thus completing the proof that this axiomatic system satisfies the principle of duality).

Theorem P4: In a projective plane of order n, every line is incident with exactly n + 1 points.

Proof: This result follows immediately from Theorem P3 and the fact that this axiomatic system satisfies the principle of duality.

Theorem P5: In a projective plane of order n, there exist exactly $n^2 + n + 1$ points and $n^2 + n + 1$ lines.

Proof:

Let P be a point in a projective plane of order n. The existence of P is guaranteed by Axiom P4, as is the existence of other points distinct from P. By Axiom P1, every point distinct from P must be on exactly one line with P. By Theorem P3, there are exactly n+1 lines incident with P. By Theorem P4, each of these lines is incident with exactly n points distinct from P (and, of course, distinct from each other). Therefore, there are $n(n+1) + 1 = n^2 + n + 1$ points in the geometry.

By the principle of duality, there are also $n^2 + n + 1$ lines in the geometry. \Box .