Math 311 - Introduction to Proof and Abstract Mathematics Group Assignment # 14 Due: At the end of class on Thursday, March 21st

Name:_

Arbitrary Unions and Intersections:

- 1. For each of the following collections of subsets of \mathbb{R} , find $\bigcup_{i=1}^{n} A_i$ and $\bigcap_{i=1}^{n} A_i$ for the given *n*-value.
 - (a) $A_i = \{0, 1, 2, 3, \dots i\}$ given that n = 5 (b) $A_i = [0, i]$ given that n = 5

(c) $A_i = \{0, 1, 2, 3, \dots i\}$ given that n = N

(d) $A_i = [0, i]$ given that n = N

Theorem 4.3.2 Let $n \in \mathbb{Z}^+$. then for all sets A, B_1, B_2, \cdots, B_n ,

- $A \cup (B_1 \cap B_2 \cap \dots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \dots \cap (A \cup B_n).$
- $A \cap (B_1 \cup B_2 \cup \cdots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_n).$
- $\overline{B_1 \cup B_2 \cup \cdots \cup B_n} = \overline{B_1} \cap \overline{B_2} \cap \cdots \cap \overline{B_n}.$
- $\overline{B_1 \cap B_2 \cap \dots \cap B_n} = \overline{B_1} \cup \overline{B_2} \cup \dots \cup \overline{B_n}.$

Proof: We will prove the first part (using proof by induction). The second part is proved in your textbook. The remaining parts are presentation problems.

Base Case: For n = 1, we see that $A \cup B_1 = A \cup B_1$, so the statement is true when n = 1.

Inductive Step: Suppose that the statement holds for all collections of sets of size m for some $m \ge 1$. That is, suppose that for any collection of sets C, D_1, D_2, \dots, D_m , we have $C \cup (D_1 \cap D_2 \cap \dots \cap D_n) = (C \cup D_1) \cap (C \cup D_2) \cap \dots \cap (C \cup D_n)$.

Given a collection of sets $A, B_1, B_2, \dots, B_m, B_{m+1}$, consider $A \cup (B_1 \cap B_2 \cap \dots \cap B_m \cap B_{m+1})$. Notice that $A \cup (B_1 \cap B_2 \cap \dots \cap B_m \cap B_{m+1}) = A \cup ((B_1 \cap B_2 \cap \dots \cap B_m) \cap B_{m+1}) = A \cup (B_1 \cap B_2 \cap \dots \cap B_m) \cap (A \cup B_{m+1})$ [by Theorem 4.2.6].

By the induction hypothesis, with C = A and $D_i = B_i$, we have $A \cup (B_1 \cap B_2 \cap \cdots \cap B_m) = (A \cup B_1) \cap (A \cup B_2) \cap \cdots \cap (A \cup B_n)$. Hence $A \cup (B_1 \cap B_2 \cap \cdots \cap B_m \cap B_{m+1}) = ((A \cup B_1) \cap (A \cup B_2) \cap \cdots \cap (A \cup B_n)) \cap (A \cup B_{m+1})$, which verifies the m + 1 case.

Therefore, $A \cup (B_1 \cap B_2 \cap \cdots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \cdots \cap (A \cup B_n)$. \Box .

The next definition extends thus idea to an infinite collection of sets (a collection indexed – that is, put in 1-1 correspondence through labeling – by the positive integers.

Definition 4.3.3: Given sets A_i , $i \in \mathbb{Z}^+$, with underlying universal set \mathcal{U} ,

$$\bigcup_{i=1}^{\infty} A_i = \{ x \in \mathcal{U} \mid \text{ there exists } i \in \mathbb{Z}^+ \text{ such that } x \in A_i \}.$$
$$\bigcap_{i=1}^{\infty} A_i = \{ x \in \mathcal{U} \mid \text{ for all } i \in \mathbb{Z}^+, x \in A_i \}.$$

2. For each of the following indexed collections of subsets of \mathbb{R} , A_i for $i \in \mathbb{Z}^+$, find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$.

(a) $A_i = \{0, 1, 2, 3, \dots i\}$ (b) $A_i = [0, i)$ (c) $A_i = [0, \frac{1}{i}]$

Definition 4.3.6: Let I be a non-empty set and let Given sets $\{A_i, | i \in I\}$ be an indexed family of sets, relative to some universal set \mathcal{U} . Then

• For each $j \in I$, $\bigcap_{i=I} A_i \subseteq A_j$.	• For each $j \in I$, $A_j \subseteq \bigcup_{i=I} A_i$.
• $B \cup \bigcap_{i=I} A_i = \bigcap_{i=I} (B \cup A_i)$	• $B \cap \bigcup_{i=I} A_i = \bigcup_{i=I} (B \cap A_i)$
• $\overline{\bigcup_{i=I} A_i} = \bigcap_{i=I} \overline{A_i}$	• $\overline{\bigcap_{i=I} A_i} = \bigcup_{i=I} \overline{A_i}$

3. Explain, in your own words, why the first two parts of the Theorem above make sense.

Functions:

Definition 5.1.1: Let X and Y be non-empty sets. A function f from the set X to the set Y, denoted by $f: X \to Y$ or by f(x) is a correspondence that assigns to each element $x \in X$ a unique element $y \in Y$.

We say that f maps x to y (written y = f(x)) when y is the unique element of Y that is assigned by f to an element x in X. We call y the image of x under f, and we call x a preimage of y under f. We say that the function f maps the set X into the set Y.

Continuing to use the notation defined above, we say that the set X is the **domain** of the function f and the set Y is the **codomain** of f.

Definition 5.1.4 Let X and Y be sets and let $f : X \to Y$. The **range** of f (also called the image of X under f) is the set $\{y \in Y \mid (\exists x \in X[y = f(x)]\} = \{f(x) \mid x \in X\}$. We will often denote this as either ran f or im f.

Definition 5.1.5 Let X and Y be sets and let $f : X \to Y$. The graph of f is the set $G_f = \{(x, y) \in X \times Y | y = f(x)\} = \{(x, f(x)) | x \in X\}.$

- 4. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by the rule f(n) = 0 if n is even and f(n) = 1 if n is odd.
 - (a) Explain, in your own words, why f, as defined above is a function.

(b) Find the following:

i. f(12) ii. f(27) iii. the image of 0 under f.

iv. The preimage of 0 under f v. The preimage of 1 under f vi. The preimage of 2 under f.

vii. The domain of f

viii. The range of f

5. Let $f(x) = \sin x$ and $g(x) = \cos\left(x - \frac{\pi}{2}\right)$ be functions from $\mathbb{R} \to \mathbb{R}$.

(a) Find the domain and range of f(x).

(b) Find the domain and range of g(x).

(c) Draw the graph of f(x).

(d) Draw the graph of g(x).

- 6. **Presentation Problems:** Let A, B, and C be arbitrary sets.
 - (a) Prove Proposition 4.2.12
 - (b) Prove $A (A B) = A \cap B$
 - (c) Prove $(A B) \cup (B A) = (A \cup B) (A \cap B)$
 - (d) Prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - (e) Prove or Disprove: If $A \subseteq B \cup C$ then $A \subseteq B$ or $A \subseteq C$.
 - (f) Prove or Disprove: If $A \subseteq B \cap C$ then $A \subseteq B$ and $A \subseteq C$.
 - (g) Prove or Disprove: If $A C \subseteq B C$ then $A \subseteq B$.
 - (h) Prove or Disprove: $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.
 - (i) Prove or Disprove: $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
 - (j) Express the set $\{1\}$ as the intersection of a collection of distinct, non-empty intervals in \mathbb{R} indexed by \mathbb{Z}^+ .