Due: At the end of class on Tuesday, March 26th

Name:_____

More on Functions:

Definition 5.1.7: Let A, B, C, and D be sets. Let $f: A \to B$ and $g: C \to D$ be functions. Then f = g if:

- A = C and B = D
- For all $x \in A$, f(x) = g(x).

Intuitively speaking, this definition tells us that a function is determined by its underlying correspondence, not its specific formula or rule. Another way to think of this is that a function is determined by the set of points that occur on its graph.

1. Give a specific example of two functions that are defined by different rules (or formulas) but that are equal as functions.

- 2. Consider the functions f(x) = x and $g(x) = \sqrt{x^2}$. Find:
 - (a) A domain for which these functions are equal. (b) A domain for which these functions are **not** equal.

Definition 5.1.9 Let X be a set. The **identity function on** X is the function $I_X : X \to X$ defined by, for all $x \in X$, $I_X(x) = x$.

3. Let $f(x) = x \cos(2\pi x)$. Prove that f(x) is the identity function when $X = \mathbb{Z}$ but not when $X = \mathbb{R}$.

Definition 5.1.10 Let $n \in \mathbb{Z}$ with $n \geq 0$, and let $a_0, a_1, \dots, a_n \in \mathbb{R}$ such that $a_n \neq 0$. The function $p : \mathbb{R} \to \mathbb{R}$ is a **polynomial of degree** n with real coefficients a_0, a_1, \dots, a_n if for all $x \in \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$.

The **zero polynomial** is the function $q: \mathbb{R} \to \mathbb{R}$ such that q(x) = 0 for all $x \in \mathbb{R}$. The degree of this polynomial is undefined.

4.	True or False:	p(x) = 1 is	a polynomial	(briefly justify you	ur answer).

5. True or False:
$$p(x) = 1$$
 is the identity function on \mathbb{R} (briefly justify your answer).

6. True or False: Every polynomial has domain
$$\mathbb{R}$$
 (briefly justify your answer).

7. True or False: Every polynomial has image
$$\mathbb{R}$$
 (briefly justify your answer).

8. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \frac{x+4}{x^2-9}$. For what values of x is $f(x)$ defined? **Note:** we often call this the *implicit* or *natural domain* of f .

9. Let
$$g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 be defined by $g(m, n) = mn$.

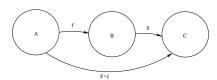
(b) Find the preimage of 0 under g.

⁽a) Find the image of the function g.

Function Composition:

Definition 5.2.1: Let A, B, C, and D be sets. Let $f: A \to B$ and $g: C \to D$ with $ran f \subset C$. The **composite** (composition) of f and g is the function $g \circ f: A \to D$ defined by, for all $x \in A$, $(g \circ f)(x) = g(f(x))$.

Note: When $f: A \to B$ and $g: B \to C$, then we the following diagram illustrates the composite function $g \circ f: A \to C$.



- 10. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be given by f(x) = x 1 and $g(x) = x^2$ for all $x \in \mathbb{R}$.
 - (a) Find $(g \circ f)(4)$

(b) Find $(f \circ g)(4)$

(c) Find $(g \circ f)(x)$

(d) Find $(f \circ g)(x)$

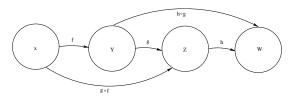
- (e) Based on this example, what do you conclude about how $(g \circ f)(x)$ and $(f \circ g)(x)$ compare in general?
- 11. Let $f(x) = \begin{cases} x-2 & \text{if } x \ge 1 \\ x+2 & \text{if } x < 1 \end{cases}$ and let $g(x) = \begin{cases} 2x & \text{if } x > 4 \\ \frac{1}{2}x & \text{if } x \le 4 \end{cases}$
 - (a) Find $(g \circ f)(1)$

(b) Find $(f \circ g)(4)$

(c) Find $(g \circ f)(x)$

Proposition 5.2.5: Let X, Y, Z, and W be sets. Let $f: X \to Y, g: Y \to Z$, and $h: Z \to W$. Then:

- $(h \circ q) \circ f = h \circ (q \circ f)$; that is, function composition is associative.
- $f \circ I_X = f = I_Y \circ f$.



Proof: Let $f: X \to Y, g: Y \to Z$, and $h: Z \to W$. To prove the first part, we must demonstrate that $(h \circ g) \circ f = h \circ (g \circ f)$. Note that both $(h \circ g) \circ f$ and $h \circ (g \circ f)$ define functions from X into W. Let $x \in X$. Suppose y = f(x). Then $(h \circ g) \circ f(x) = (h \circ g)(f(x)) = (h \circ g)(y) = h(g(y)) = h(g(f(x)))$. Similarly, $h \circ (g \circ f)(x) = h((g \circ f)(x))$. But $(g \circ f)(x) = g(f(x)) = g(g)$, so $h((g \circ f)(x)) = h(g(g)) = h(g(f(x)))$. Hence, for any $x \in X$, $(h \circ g) \circ f(x) = h \circ (g \circ f)(x)$. Hence $(h \circ g) \circ f = h \circ (g \circ f)$.

Let $x \in X$. Recall that by definition, for any $x \in X$, $I_X(x) = x$. Therefore, $(f \circ I_X)(x) = f(I_X(x)) = f(x)$. Hence $f \circ I_X = f$. The proof that $f = I_Y \circ f$ is a similar proof that is left to you. \square .

12. Prove that $f = I_Y \circ f$.

13. Find a distinct pair of functions, $f, g : \mathbb{R} \to \mathbb{R}$ such that $f \circ g = g \circ f = I_{\mathbb{R}}$.

Definition 5.3.1 Let X and Y be sets and let $f: X \to Y$.

• The function f is **one-to-one** if $(\forall x_1, x_2 \in X)[x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)]$, or, equivalently, $(\forall x_1, x_2 \in X)[f(x_1) = f(x_2) \Rightarrow x_1 = x_2]$.

When f is one-to-one, we say that f is **injective**, or that f is **an injection**.

- The function f is **onto** if $(\forall y \in Y)[\exists x \in X \mid y = f(x)]$. When f is onto, we say that f is **surjective**, or that f is **a surjection**. Note that $f: X \to Y$ is onto iff ran f = Y.
- The function f is **bijective**, or is a bijection (or a 1-1 **correspondence**), if f is both an injection and a surjection. That is, f is both 1-1 and onto.

Example: Let f(x) = 3x - 2. We will prove that f(x) is a bijection from \mathbb{R} to \mathbb{R} .

First, to see that f(x) is 1-1, suppose that f(a) = f(b). Then 3a - 2 = 3b - 2. Adding 2 to both sides gives 3a = 3b. Dividing both sides by 3 gives a = b. Hence f is 1-1.

To see that f is onto, let $y \in \mathbb{R}$. Let $x = \frac{y+2}{3}$ (note that $x \in \mathbb{R}$). Then $f(x) = f\left(\frac{y+2}{3}\right) = 3 \cdot \left(\frac{y+2}{3}\right) - 2 = (y+2) - 2 = y$. This shows that $y \in im f$. Since y was arbitrary, this demonstrates that f is onto.

Since f is both 1-1 and onto, then f is a bijection. \square .