Math 311 - Introduction to Proof and Abstract Mathematics Group Assignment $\# 17$ Name: Due: At the end of class on Thursday, March 28th

Recall: Definition 5.4.1 Let X and Y be sets and let $f : X \to Y$. We say that f is invertible if there exists a function $g: Y \to X$ such that for all $x \in X$ and for all $y \in Y$, $y = f(x)$ if and only if $x = g(y)$.

When this definition is satisfied, we say that the function g is an **inverse function** of f.

Notation 5.4.8: When $f: X \to Y$ is invertible, the unique inverse function is denoted by f^{-1} , and $f^{-1}: Y \to X$.

Corollary 5.4.9 Let X and Y be sets and let $f : X \to Y$. If f is a bijection, then $f^{-1} : Y \to X$ is a bijection.

Corollary 5.4.10 Let X and Y be sets and assume $f : X \to Y$ is 1-1. Then the function $g : X \to ran f$ defined by, for all $x \in X$, $g(x) = f(x)$ is invertible.

Corollary 5.4.11 Let X and Y be sets and let $f : X \to Y$ and $g : Y \to X$. If $g \circ f = I_X$ and $f \circ g = I_Y$, then $g = f^{-1}$ and $f = g^{-1}.$

1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f((x, y)) = (2y, 3x)$. Determine whether or not f is invertible. If it is invertible, find f^{-1} . its inverse function.

Definition 5.5.1 Let $f : X \to Y$ and $A \subseteq X$. The **image of** A under f is the set $\{y \in Y \mid (\exists x \in A)[y = f(x)]\}$ ${f(x) | x \in A}$. We sometimes denote the image set as $f[A]$.

Definition 5.5.2 Let $f : X \to Y$ and $B \subseteq Y$. The inverse image of B under f (also called the preimage of B under f) is the set $\{x \in X \mid f(x) \in B\}$. We sometimes denote the preimage of a set as $f^{-1}[B]$ (even in situations where f is not invertible).

2. Let $f : \mathbb{Z} \to \mathbb{Z}$ be given by $f(k) = k + 11$. Let E be the set of even integers and let F be the set of odd integers. Let $A = \{k \in \mathbb{Z} | k \geq 0\}$, and let $B = \{k \in \mathbb{Z} | k < 0\}$

(a) Find $f[E]$. (b) Find $f[A]$.

(c) Find f^{-1}

 $[F]$ (d) Find $f^{-1}[B]$

Note: We will spend the remainder of the day on Presentation Problems.

- (a) Give a **proof** or a **specific counterexample** for the following: If ℓ divides m and m divides n, then ℓ divides n.
- (b) Use the Principle of Mathematical Induction to prove that for all $n \geq 1$, $\sum_{n=1}^{n}$ $k=1$ $\frac{1}{k(k+1)} = \frac{n}{n+1}$ $n+1$
- (c) Use the Principle of Mathematical Induction to prove that for all $n \geq 5$, $n^2 < 2^n$.
- (d) Use mathematical induction to prove that $x^2 1$ is divisible by 8 whenever x is a positive odd integer.
- (e) Prove or disprove: Let a, b, c and d be integers. If $a|b$ and $c|d$, then $ac|bd$.
- (f) Prove that $x^2 + y^2 = 11$ has no integer solutions.
- (g) Prove or disprove: If a does not divide bc, then a does not divide b .
- (h) Formulate a conjecture about the decimal digits that appear as the final digit of the fourth power of an integer. Prove your conjecture using proof by cases.
- (i) Suppose that a fast food restaurant sells chicken nuggets in packs of 4, 7, or 9. What is the largest number of chicken nuggets that you cannot buy exactly (Fully justify your answer).
- (j) Suppose that a different restaurant sells chicken nuggets in packs of 4 or 15. What is the largest number of chicken nuggets that you cannot buy exactly (Fully justify your answer).
- (k) Prove Proposition 4.2.12
- (l) Prove $(A B) \cup (B A) = (A \cup B) (A \cap B)$
- (m) Prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- (n) Prove or Disprove: If $A C \subseteq B C$ then $A \subseteq B$.
- (o) Prove or Disprove: $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.
- (p) Prove or Disprove: $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (q) Express the set $\{1\}$ as the intersection of a collection of distinct, non-empty intervals in R indexed by \mathbb{Z}^+ .
- (r) Use the properties of Real Numbers to prove that given $a, b \in \mathbb{R}$, $ab = 0$ if and only if $a = 0$ or $b = 0$.
- (s) Let P be the set of all polynomial functions. Let $D: \mathcal{P} \to \mathcal{P}$ be the function given by $D(p(x)) = p'(x)$. That, the function that maps each function to its derivative. Each of the following is a separate presentation problem: i. Find im D.
	- ii. Let $\mathcal{L} = \{p(x) \in \mathcal{P} \mid p(x) = ax + b$. Find the preimage of \mathcal{L} under D.
	- iii. If D 1-1? Justify your answer.
- (t) Let $h(x) = \sqrt{x^2 + 1} 5$. Find three different ways to express $h(x)$ as the composition of two functions (that is, find three distinct pairs of functions f and g so that $h = g \circ f$.
- (u) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f((x, y)) = x + y$. Show that f is not 1-1, but that f is onto.
- (v) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f((x, y)) = x + y$. Find a set $A_0 \subset \mathbb{R}^2$ so that $f : A_0 \to \mathbb{R}$ is a bijection.
- (w) Prove Corollary 5.4.10
- (x) This problem involves a famous set-theoretic concept called Russell's Paradox. According to Russell's definitions, a set A is called normal if A is not an element of itself. Similarly, a set is abnormal if it is an element of itself.
	- i. Give an example of a set that is normal.
	- ii. Give an example of a set that is abnormal.
	- iii. Let $\mathcal{N} = \{A \mid A$ is a set that is normal } and let $\mathcal{A} = \{A \mid A$ is a set that is abnormal }. Is N a normal set or an abnormal set? How about \mathcal{A} ? Explain how this leads to a paradox and comment on what caused things to go wrong.