
Math 311 - Introduction to Proof and Abstract Mathematics
Group Assignment # 19 Name:

Due: At the end of class on Thursday, April 11th

Congruence Classes:

Recall: Definition 6.4.1: Let a, b ∈ Z, and let m ∈ Z
+. The integers a and b are congruent modulo m, written

a ≡ bmodm if m | (a− b).

1. The following activity is designed to introduce you to the concept of congruence classes modulo m in a natural way
using the example of mod 5 equivalence. For every integer a, let [a]5 be the set of all integers that are congruent to a

modulo 5.

(a) Use set notation to express [0]5 in roster form. Do the same for [1]5, [2]5, [3]5, [4]5, and [5]5.

(b) What is the remainder when 4567 is divided by 5? Which, if any, of the sets you found in part (a) contains 4567?

(c) What is [1]5 ∩ [2]5?

(d) What is [0]5 ∪ [1]5 ∪ [2]5 ∪ [3]5 ∪ [4]5?

(e) If [a]5 = [b]5, what can we say about a and b?



Definition 6.5.2: Let a ∈ Z and let m ∈ Z
+. The congruence class of a modulo m, denoted [a]m, is the set of all

integers congruent to a modulo m. In other words, [a]m = {x ∈ Z : x ≡ amodm}.

2. Notice that 31 ≡ 7mod 12. Which of the following statements are true? Justify your answers.

(a) 7 ≡ 12mod 31. (b) 7 ≡ 31mod 12. (c) 12 ≡ 31mod 7.

Definition 6.5.4 The set of integers modulo m, denoted Zm, is the set Zm = {[0]m, [1]m, · · · , [m− 1]m}.

Note that in the activity you completed above, you found the elements of Z5. While there are many similarities between
Z5 and the set {0, 1, 2, 3, 4}, they are not equal as sets, as they contain different types of elements (integers vs. sets of
integers). The previous activity also illustrates the properties summarized in the following theorem.

Theorem 6.5.5 Congruence classes modulo m form a “partition” of Z. That is:

• For all a ∈ Z, a ∈ [a]m.

• For all a, b ∈ Z, a ≡ bmodm if and only if [a]m = [b]m.

• For any pair a, b, we must have either [a]m = [b]m or [a]m ∩ [b]m = ∅.

• For any positive integer m, Z is the disjoint union of the set of equivalence classes modulo m.

Note: A single equivalence class can be represented infinitely many ways using as expression of the form [a]m. For
example, [2]5 = [7]5 = [112, 682]5 = [−1, 125, 673]5. However, we usually consider [a]m with a ∈ {0, 1, · · ·m− 1} as, in
some sense, a “canonical” representative for the equivalence class.

Theorem 6.5.6 Let a1, a2, b1, b2 ∈ Z and assume that [a1]m = [a2]m and [b1]m = [b2]m. Then:

• [a1 + b1]m = [a2 + b2]m.

• [a1 − b1]m = [a2 − b2]m.

• [a1b1]m = [a2b2]m.

3. Let m = 7 and suppose a1 = 12, a2 = −2, b1 = 10, b2 = 24.

(a) Verify that [a1]m = [a2]m and [b1]m = [b2]m.

(b) Verify that all three parts of the previous theorem hold for this particular example.



Note: The proofs of each part of Theorem 6.5.6 are presentation eligible problems.

Definition 6.5.7: Given [a]m, [b]m ∈ Zm, we define the following “arithmetic” operations (mod m):

• [a]m +m [b]m = [a+ b]m

• [a]m −m [b]m = [a− b]m

• [a]m ·m [b]m = [ab]m

4. Create an “addition” table and a multiplication table for Z5 (simplify to use “canonical” representatives for each table
entry).

5. Create an “addition” table and a multiplication table for Z6 (simplify to use “canonical” representatives for each table
entry).

6. Which properties of standard arithmetic operations seem to hold for these operations (e.g. commutativity, associativity,
additive and/or multiplicative identities, additive and/or multiplicative inverses)?


