Math 311 - Introduction to Proof and Abstract Mathematics Group Assignment # 21 Due: At the end of class on Tuesday, April 23rd

Name:__

Equivalence Classes and Partitions:

Recall – **Definition 7.2.1:** Let \sim be a relation on a set A.

- We say that \sim is **reflexive** if for all $a \in A$, $a \sim a$.
- We say that \sim is symmetric if for all $a, b \in A$, if $a \sim b$ then $b \sim a$.
- We say that ~ is **transitive** if for all $a, b, c \in A$, if $a \sim b$ and $b \sim c$, then $a \sim c$.
- The relation \sim is called an **equivalence relation** on A if \sim is reflexive, symmetric, and transitive.
- 1. In a previous example, we defined a relation \sim on $\mathbb{Z} \times \mathbb{Z}^*$ as follows:

For all $a, c, \in \mathbb{Z}$ and all $b, d \in \mathbb{Z}^*$, $(a, b) \sim (c, d)$ if and only if ad = bc. Note that the elements of \sim are actually ordered pairs of ordered pairs. That is, \sim consists of elements of the form ((a, b), (c, d)). For example, $(2, 4) \sim (3, 6)$ since $(2) \cdot (6) = (4) \cdot (3)$.

(a) Determine whether or not \sim is reflexive. Fully justify your answer.

(b) Determine whether or not \sim is symmetric. Fully justify your answer.

(c) Determine whether or not \sim is transitive. Fully justify your answer.

(d) Based on what you found above, is \sim an equivalence relation? Why or why not?

Definition 7.2.5: Let \sim be an equivalence relation on a nonempty set X and let $a \in X$. The **equivalence class** of a is the set $[a] = \{x \in X \mid x \sim a\}$. The set of all equivalence classes of \sim is denoted by $X/ \sim = \{[a] \mid a \in X\}$. Note that since X/ \sim is a collection of subsets of X, $X/ \sim \subseteq \mathcal{P}(X)$.

Example 1: Our first (and perhaps most straightforward) example of equivalence classes are the *congruence classes* modulo n that we looked at on Assignment 20. We developed a complete listing of the congruence (equivalence) classes when n = 5 on that assignment. Recall that we proved at the end of Assignment 21 that congruence modulo n is an equivalence relation. We can carry out a similar process for any value of n. We also looked at some nice properties of these sets that will end of being true for any set of equivalence classes for an equivalence relation \sim .

That is, if \equiv_m is the relation congruence modulo m on the set \mathbb{Z} , then for any $a \in \mathbb{Z}$, $[a] = [a]_m = \{b \in \mathbb{Z} \mid b \equiv a \mod m\}$. The set of all equivalence classes is $\mathbb{Z}/\equiv_m = \mathbb{Z}_m = \{[0]_m, [1]_m, \cdots, [m-1]_m\}$. Note that we do not need to list any additional sets, as once we have a set or each "canonical representative", we have a complete listing of all possible equivalence classes.

- 2. Let ~ be the equivalence relation on \mathbb{Z} defined by $m \sim n$ if and only if $m^2 = n^2$.
 - (a) Prove that \sim as defined above is an equivalence relation.

(b) Find the equivalence classes [3], [17] and [0]. Then give a general description of equivalence classes for this equivalence relation.

3. Recall the relation defined above: for all a, c, ∈ Z and all b, d ∈ Z*, (a, b) ~ (c, d) if and only if ad = bc.
(a) Find [(1,2)]

(b) Find [(4,3)]

(c) Give a general description of the equivalence classes for this relation.

Theorem 7.2.9: Let \sim be an equivalence relation on a nonempty set X.

- For all $a \in X$, $a \in [a]$.
- For all $a, b \in X$, $a \sim b$ if and only if [a] = [b].
- For all $a, b \in X$, $a \not\sim b$ if and only if $[a] \cap [b] = \emptyset$.

Proof:

To prove the first part, let $a \in X$. Since \sim is reflexive, we have $a \sim a$. Hence, by Definition 7.2.5, $a \in [a]$.

To prove the second part, suppose $a, b \in X$.

" \Rightarrow " Assume $a \sim b$. We must show that [a] = [b]. Since [a] and [b] are sets, we will use a standard set containment argument to show equality. Suppose that $x \in [a]$. Then, by definition of [a], $x \sim a$. We also have that $a \sim b$, so, by transitivity, we must have $x \sim b$. Hence $x \in [b]$, and thus $[a] \subseteq [b]$. Similarly, if we suppose that $x \in [b]$, then $x \sim b$. Since $a \sim b$, since \sim is symmetric, $b \sim a$. Hence, since $x \sim b$ and $b \sim a$, by transitivity, we have $x \sim a$. Therefore $x \in [a]$, and hence $[b] \subset [a]$. Thus [a] = [b].

" \Leftarrow " Assume that [a] = [b]. We must show that $a \sim b$. By the previous part of this theorem, $a \in [a]$. therefore, since $[a] = [b], a \in [b]$. Thus, by definition of $[b], a \sim b$.

To prove the third part, we will use proof by contraposition.

" \Rightarrow " Assume that $[a] \cap [b] \neq \emptyset$. We must show that $a \sim b$. Since $[a] \cap [b] \neq \emptyset$, there is some element $x \in X$ such that $x \in [a] \cap [b]$. Since $x \in [a]$, $x \sim a$. Thus, since \sim is symmetric, $a \sim x$. Similarly, since $x \in [b]$, $x \sim b$. Therefore, since $a \sim x$ and $x \sim b$, since \sim is transitive, $a \sim b$, as desired.

"⇐" Assume that $a \sim b$. We must show that $[a] \cap [b] \neq \emptyset$. As above, $a \in [a]$. Moreover, since $a \sim b$, then $a \in [b]$. Hence $a \in [a] \cap [b]$. This $[a] \cap [b] \neq \emptyset$. \Box .

Definition 7.3.1 Let X be a nonempty set, and let **P** be a collection of subsets of X (i.e. $\mathbf{P} \subseteq \mathcal{P}(X)$). The collection **P** is a **partition** of X if:

- For all $A \in \mathbf{P}$, $A \neq \emptyset$.
- For all $A, B \in \mathbf{P}$, A = B, or $A \cap B = \emptyset$.
- For all $x \in X$, there exists $A \in \mathbf{P}$ such that $x \in A$ (that is, the sets in \mathbf{P} cover X).

Example: Let $X = \{a, b, c, d, e\}$. Then $\mathbf{P} = \{\{b, d\}, \{a\}, \{c, e\}\}$ is a partition of X.

Corollary 7.3.3 (Corollary to Theorem 7.2.9). Let \sim be an equivalence relation on a nonempty set X. Then $X/ \sim = \{[a] \mid a \in X\}$, the set of equivalence classes of \sim is a partition of X.

4. Let $X = \{a, b, c, d, e, f, g\}.$

(a) Find a partition of X involving exactly three subsets of X.

(b) Find a partition of X involving more than four subsets of X.

(c) Find a collection of subsets of X whose union is X but that **do not** form a partition of X. Explain why your example fails to be a partition.

Theorem 7.3.5 Let **P** be a partition of a nonempty set X. Define a relation \sim on X for all $a, b \in X$ by defining:

$$a\sim b\Leftrightarrow (\exists A\in\mathbb{P})[a\in A\wedge b\in A].$$

Then \sim is an equivalence relation on X. Furthermore, the equivalence classes of \sim are exactly the elements of the partition **P**; that is, $X/\sim = \mathbf{P}$.

Proof: See page 164 in your textbook.

5. Let $A = \{a, b, c, d, e, f\}$. Give a complete listing of the ordered pairs in the equivalence relation \sim generated by the partition $\mathbf{P} = \{\{a, c, e\}, \{b, f\}, \{d\}\}$