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TOSSING A COIN

JM. NATER, P. WEAR, M. COHEN

ABSTRACT. We study the properties of a function that takes x €

[0,1] as input and determines the probabilty that the number ob- No

tained by writing a decimal point and then tossing a coin infinitely < .

many times, writing a 1 after the point when the outcome is heads Com MVET
and a 0 when the outcome is tails, is less than or equal to z.

1. INTRODUCTION

The result of n tosses of a two-headed coin can be represented by an
n-digit binary number in the interval [0,1]. The kth digit is 0 if the kth
toss comes up tails and 1 if it comes up heads. These representations Nd&—
correspond to rational numbers with denominators of the form 2% for Wl 2 . Rotes -
some k, a.k.a. dyadic rationals. Similarly, an infinite series of tosses) . l"““"j pro- "
gives us a binary representation of any real number in the interval [0,1]. .y £4
Now let y be the outcome of an infinite toss. For any given real number -
z € [0,1] we would like to determine the probability that y < z and reest-
we denote this probabilty by f,(z) where p € (0,1) is the probability veel wim bor
that a coin toss comes up heads.
For an idea of how to go about compute let us compute fy(3). The
binary. expfcmsion for % is .01. Now we consider ihe possible outcomes T TR
of an infinite sequence y of coin tosses. For .01—<"7 the first must &
necessarily come up tails, which contributes 1 — p to the probability. If ﬁ,o 2e __L__"ST Hhom
the second toss comes up tails the inequality is still satisfied{ however VO, = sa
if it comes up heads, for the rest of the inequality to be satisfied the
remaining tosses must represent a number less than or equal\to the
remaining digits of 3, which also have the form .01. So then

5(3) =a-pa-p+a5(3)

Solving that equation we get

e
(@) =g
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The follow images should provide some intuition about the behavior of
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TOSSING A COIN 3

For most values of p, the function f, is pathological, but it has many
interesting properties. In the following sections we prove continuity of
fp for p € (0, 1), show that f,(z) is not nowhere-differentiable and give
a definition of arc length for f,.

Sections 1, 3 by J.M. Nater
Sections 2, 6 by P. Wear G Ca‘ 2

Sections 4, 5 by M. Cohen 2okl W{' bk
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Given a binary representation of some/mnumber x 6%1], the map- S€= e &
ping x + § corresponds to inserting a 0 hetween the décimal point and LWhef F‘Lb-m?
the first digit of z. Similarly, z — £ +5 correspoy?: to inserting a 1 & A ,
between the decimal point and the firsy digit of z.! We now introduce &~ T ok o
two functional equations that give us fa method for evaluating f, on  SeuBlie ke
any dyadic number. Given a dyadic z, for an infinite flip sequence to |, fvodacas
be less than § the outcome of the first toss must be tails and the rest tHe 1T d
of the tosses must represent a number less than z. The probability of ) -
the first toss being tails is (1 — p) and the probability of the rest of the Ty pecle
flips being smaller than z is f,(z), so we have

2. CONTINUITY,

M) 5(3) = -5,
>-whjch immediately generalizes to fp(%) = (1 — p)*f(z). /l:fr the

infinite toss sequence to give a number smaller than £ + 7 the first
toss can come out either heads or tails. If it is tails the sequence will
necessarily be smaller. If it is heads, then the rest of the sequence must
give a number smaller than x, and so we have the second equation:

(2) fp(%Jr-;-) =1—p+pfp(z)

These two functional equations allow us to calculate f, for any dyadic
number, since every such number can be represented by a finite binary
sequence (preceded by a decimal point of course) ending in a 1, and
so we can start with f,(.1) = (1 — p) and keep iterating (1) and (2)
depending on the bits until we reach the desired dyadic.

Now we are ready to prove continuity. We will use the two equations
and monotonicity, which follows from the basic measure-theoretic ar-
gument that if y > z the probability that a toss sequence is less than y
cannot be less than the probability that a toss sequence is less than x.
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Because we have monotonicity it suffices to show that for any z and
any € > 0 there are numbers y < x and y' > z such that f,(z)— fo(y) < -
¢ and f,(y') — fp(z) < e. Without loss of generality assumep > 1 —p. — ool that?
For any = € (0, 1) and for any positive integer N there exists n > N
such that the nth digit of = is 0. If this were not the case then there
would be some point after which all the digits were 1, in which we
could use the substitution .01 = .10 to obtain the desired form. Now
let 4/ = z+ 27", where the nth digit of z is 0. Ib@-%toss sequen;Z
which correspond! to number smaller than 7 but greater than z afe- hay e (Wf"jg fuar
these-for-which the first n — 1 § agree with the first n — 1 digits of
z, 50 because p > 1—p we have f,(y') — f,(z) < p"~!. As n approaches
infinity f,(y") — f»(y) will approach 0, so given any ¢ > 0 we can always
choose an appropriate y'.
We can find y < z similarly, as there will be infinitely many 1s in the
binary expansion of x and in this case we want to choose a 1 arbitrarily

far down the binary expansion and flip it to a 0. Gentinuity—feHews 7 s $\3°><¢

tmmediatety:
Thais U Dap sy 3. DIFFERENTIABILITY AT & = %
o bhead Although a thorough characterization of the seS)on which f, is dif-
Betern o san, - ferentiable is not available yet, we at least know f, is not nowhere-
& o i ifferentiable. We prove this by showing differentiakilty at =z = %
Lot First notice that the binary representation of 3 is .01, so that the prob- . &
Wk o e ability that the outcome of 2n coin tosses matches the first 2n digits of Toudact “\:“’Q.
_ BY —
prave M O is p"(1—p)". Now denote-the derivative limit lim hlz+ 11 fol®) ﬁﬁé et
e 2 by fi(z). As we did for continuity, we can choose a 0 arbitrarily far Bk s mik
. al ™t down the binary representation of % Now let the (2k + 1)th digit be 0, T —
so that setting h = sy and adding# %o = will flip that digit to a 1. 4
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which, because as k approaches infinity h approaches 0, is equiv:
to saying f'(3) = O.ﬁn the case p = 3 the function f1(z) is exactly the
line y = x which is also differentiable.'a—— Pr{bd‘% k|

4. DEFINING ARC LENGTH

An interesting question to ask about f, is its total arc léhgth. In

order to rigorously investigate this, however, we will need an actual
definition of arc length. The traditional definition of arc length, as
seen in introductory calculus courses, is defined using the derivative of
the function:

Definition 4.1. Let f be a function defined and continuously differen-
tiable on [a,b]. Then the arc length of f on [a,b] is

| ) "I kL once leyt.”
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This definition clearly does not work for f,] since f, is undifferen-
tiable on a dense set of points in its domain. However, there is a natural
definition of arc length which applies to all functions (although it may
be infinite). To introduce it, we must first define a partition:

Definition 4.2. A partition P of the closed interval [a,b] is a finite
sequence of n points x; satisfying z, = a, x, = b, and x; < z;, for
all i where both are defined. The fineness of P, F(P), is defined as the
largest value of i1 — x;. [a,b] is the set of all partitions of [a, b].

A partition can be viewed as a way to split [a, b] into the subintervals
[#i, z;41]. Note that this notion of a partition is also used in the defi-
nition of Riemann integration. We define a notion of an approximate
arc length using a partition:

Definition 4.3. Let f be a function defined on [a,b], and let P be a
partition of [a,b], consisting of z; for 1 < i < n. Then the P-length of
f iz

n—1

(4) Le(f) =Y V(a1 — ze)2 + (f@re1) — Flan)?
k=1

The P-length essentially gives an approximate arc length, defined
with the granularity given by the partition. It is the arc length that f
would have if it consisted of a collection of line segments, each covering
a segment from P, but with the correct value on the endpoints of each
segment. We can now define the actual arc length:
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Definition 4.4. Let f be e function defined on [a,b]. Then the arc
length of f on |a,b] is

(5) p(f)
’
@t
pot Sk  Gahanrnl T erdd {1
The motivation for this definition is that the P-lengths define the l

lengths of arbitrarily fine approximations to f, but the P-lengths should
always be at most the actual arc length (since lines are the shortest
path between two points). In fact, this supremum is also a sort of limit:

Lemma 4.5. Let f be a function defined on [a, b, with finite arc length
s defined according to 4.4. Then for any €, there exists a & such that
for all partitions P with fineness at most 8, |s — Lp| < €.

. e o e éﬂ&‘:‘ 4 & Dhert cagewe Lewasr  sialy, .
w*“wuj

(-]

K_ This lemma can be proved with a relatively simple bounding argu-

o ment (essentially, given a P with arc length close to the supremum,
all sufficiently fine partitions must have arc length almost that of P,
while they are still bounded above by s). The detailed proof is omit-
ted here, since it is not the focus of this paper. The lemma could be
taken as giving an alternative, possibly more natural definition for the
arc length of s; this definition is very similar to that of the Riemann
integral.

Note that both of these definitions are equivalent to 4.1 for continu-
ously differentiable functions. This can also be proved relatively simply
(by showing that the value of \/1 + f/(z)2Az is close to \/(Az)? + (Ay)?
for sufficiently fine partitions). Again, the detailed proof is not given

S S here.
Yo ﬂ""'—j " Finally, consider that v/(zr11 — z1)% + (f(zk41) — f(z))? is upper-
Mt—;,-{.'a-‘ bounded (by the triangle inequality) by (zxv1 — zx) + | f(@ki1) — f(z8)|-
In the special case when f is monotonically increasing, f(zyi1) —
¢ :d e U f(zx) is always nonnegative, so we can drop the absolute value there:
e V (@ks1 — 2)? + (f(@1) — F(@0)? < (@1 —2a) +(F(@r1) — f k).
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That can be used to bound Lp(f) for any partition P of [a, b]:

Lp(f) = i ﬂ$k+1 = xk)2 * (f(»'ﬁkﬂ) — f(ze))?

k

< ) (Zea — z) + (fzrsr) — fz))

3

(6) k:—ll n—1
= (> T — ) + (Z F(@ri1) — flaw))
k=1 k=1

= (2n — 21) + (f(@a) — Fl21))
= (b—a) + (f(b) — f(a))

Since the arc length is the supren(@ of the Lp, that gives rise to the
following lemma: -

Lemma 4.6. Let [ be a monotonically increasing function defined on
[a,b]. Then the arc length of f is at most (b — a) + (f(b) — f(a)), and
in particular is finite. N ek {P L T .
vl u‘\«l?‘q.;—-.li‘ v‘“‘-’r
5. ARC LENGTH OF f, Ty do m prose fhtis |/

We now have the machinery to investigate the arc-length of the f,
on [0, 1]. For the special case of p = %, the arc length'is clearly just v/2,
since it is a straight line. For other values of p, we/still know that f, is
monotonically increasing, and that f,(0) = 0 and f,(1) = 1. Then by
4.6 the arc lengths must be at most 2. / .
In this section, we will show that that bound is in fact tight: the arc e L*"”‘u i
length of f, is 2. This, on its face, is somewhat surprising. Despite the feus
fact that f, is continuous, its arc length is the same as it would be if &+~ e e
\ it were a monotonic step function covering the same range.
\ In fact, the proof can be interpreted as ghowing that f, is “almost
a step function” in that\it can be broken /[down into intervaly which -
are mostly completely flat, but where the actual increase of f, mostly Maler o

T © aw happens over intervals that are very stpep, glmost vertical. ol |
) sy ¢

U““""‘PQ— s We will .,l(ﬁ_ﬁ&r boungd, the P,-lengths,for particular partitions F,,
verb r"‘hm@_ whese P, consists of the points z; = %l-ﬁfor 1 <1< 2"+ 1. These Rl Fﬁt't“'

Tue Y"’h have the property that z;., — ; is always 55: they divide [0, 1] into 2"

equal segments. To obtain bounds, we will estimate the distribution of &.{ Jises Ea“ ‘::J

. F@i) ~ £(z) et
¥e The z; (for 1 < 7 < 2") are precisely those numbers whose binary
= expansion is all zeroes after the first n places after the decimal point. Ndtclear
&0

BUZAFON  ¥POLDEO | 4 uD MPNAN® ) _@XeUBe s XDt Rd g3 p = a NQIREGHL DOLYAZPA @44 6F ) o



QuQupv

et
bk

\ch
pse

g

Vi d, 0

(_,Lmducrt-}eﬂﬁ that apply for all z in [0,1]: f,(3) = (1 — p)fo(z), and

‘,«h—m%&

T
sk 4P

Q}/f‘w a
Dkﬂ, 4

(

2Lp 177 x% ©y© 0»P»?x Ge8stwx=rvx]°roH! |altafaxe

8 JM. NATER, P. WEAR, M. COHEN

To examine f(x;41) — f(x;) we define the function

(7 Dw.m) = £ (v+ 35 ) ~ @

so that D(z;,n) = f(ziy1) — f(z:).! D satisfies the following:

Lemma 5.1. For all nonnegative integers m, all y in [0,1) such that

©sg X

ok At

Set

2™y is an integer, D(y,m) is p*(1— p)®, where a is the number of ones Dy, o) = PYtT)

in the binary expansion of yw&e@ and b is the number
| et eipudezay 2%y |

of zeroes. |

Proof. We will prove this by induction on m. If m = 0, it is trivial: y

must be 0, and D(0,0) = f(1) — f,(0) =1 =p°(1 — p)°, as expected.
For m > 0, we will use the functional equations (men-m_them Q.t 4 N du-.e

Lz +5)=1—p+pllz).

Flrst note that if y is in [0, ), y + 5= is in [0, 3] (becanse both of

tlmn,_uhm_mmnphed—by%—ateﬂﬂtege}s—and—th%Léﬁer—by% they
can't-skip_overthe-integer-27='). Otherwise, both must be in [3,
The former case corresponds precisely to the first bit after the decmlal

Tiea lv—p"‘ﬁf‘“‘"‘

place being 0, and the latter corresponds to it being 1.

e In the former case, we can apply the first fu onal equation

witha:=2yand:c:2(y+§%;;) to get fAy) = (1 —
and f, (y—l—%) = (1-p)fp (294'2'—'}5)' o (y+2m)

1].

P)fo(2y)
fr(y)=
thefl_comes out-te (1 — p) M(2y, m — 1). Replacing y by 2y and

m by m — 1 is precisely stripping the leading 0 from the binary
expansion, while otherwise keeping the numbers of zeroes and
ones up to the mth place the same. The requirements for the
lemma are preserved. Thus, if-thelemma totds—for—-m—rt,
M(2y, m—1) weibe p*(1 — p)b 1 so M(y, m) watBhe p®(1—p)’

The latter case is similar. Here, we apply the second functionﬁf_

equation with z = 2y — 1 and =z = 2 (y + 51,,7) — 1, getting
fp( ) =1-p+pfp(2y—1) and f, (y+ 2%1) = 1-p+pfp(2y—1+
57=1)- Jo (¥ + 3=) — f»(y) then comes out to pM(2y—1,m—1).
Replacing y by 2y — 1 and m by m — 1 is stripping the leading 1
but otherwise keeping the bits the same, and the requirements
for the lemma are again preserved. Thus, if the lemma holds

for m — 1, M(2y — 1,m — 1) will be p*1(1 — p)°, so M(y,

will again be p'(1 — p)®, again satisfying the lemma.

m)

The lemma then holds for m = 0 and holds for m if it holds for m — 1,

so by induction it holds for all m.
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This lemma implies that f(x;y1) — f(z;) is p*(1 — p)®, where a is the

number of ones and b the number of zeroes in the binary expansion of
x;, up to the nth place. If we define

(8) dy= D if the kth bit in the binary expansion of z; is 1
7 Y1—p if the kth bit in the binary expansion of z; is 0

then we can alternatively write

(9) fl@in) = f(z:) = ] de
k=1

We can then get \/

(10) logy(f(zi1) — f(z:)) = Y logy di
k=1

We will now look at x; as a random variable, with 7z chosen uniformly
out of the integers from 1 to 2". It is important to note that each digit
in the binary expansion of z; is independent of all the rest, so the dj
(and log, k) are independent random variables. Furthermore, each of
dy (and each of log, di) has the same distribution (since the probability
of each bit being 0 is alway@. We let i be the mean value of log, dj,
and ¢ be the variance. Nofe that the probability distribution of an
individual dy does not depend on n, so neither do ux or o. Since the
probability of picking each value is 3,

1
p= §(log2p+ log,(1 —p))
= log, vp(1 — p)

(11) : celhamaa o
< log, 2 (by A inequality) G.-GNW-EA. a

= ~1]

Since p < —1, we can then pick some real number r such that p <
r < —1. We will take any such r (again, not depending on n).

We need not calculate o? explicitly; what is important is that it is
constant over choice of n and that it is finite (since it applies to a
discrete probability distribution).

Since logs( f(2i+1) — f(2;)) is the sum of n independent instances of
the same probability distribution, it has mean nu and variance no?.
Then we can apply Chebyshev’s inequality to bound the probability

Zox

bosa,
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that log,(f(xi+1) — f(z;)) > nr: Chebyshev’s inequality says this prob-
ability is at most

2 2

no 1 g

(12) (nr — nu)? T nor—u

@1 for any € > 0, there exists an N such that if n > N, that
probability will be at most §: we can simply set N to % . ri_i:

Notably, exponentiating both sides shows that this is actually bound-
ing the probability that f(z;41)—f(z;) > 2" Sincer < —1, lim,,_,_, 21 =
0. Applying the definition of a limit, this means that for any ¢ > 0,
there exists an N’ such that if n > N/, 27(r+1) < =

Given any € > 0, we will then pick n as max(N, N’). We divide the
i (for ¢ from 1 to 2") into “good” and “bad” values: “good” values
satisfy f(@i41) — f(zi) < 2™ while “bad” ones do not. For each “good”
?'5

(i) — flm) < 27
(13) =g g ey of Tuese
< Lo e,
2 / &L U ¥
Since there are only 2" values of i, samming this-over atl-good-7gives ]
less than §. On the other hand, summing f(2;41) — f(z;) over all 4 //
gives f(xany1) — f(z1) = 1. Thus the sum of f(z;1) — f(z;) over all
s ﬁ‘% bad z' 1—£. Furthermore, \/(zi11 — 7:)% + (f($i+1)- Flz))? 2
f(ziy1)— f(;) by the triangle inequality, so the sum of /(241 — 2:)2 + (f (xi+1)— flz:))?
over all bad 7 is greater than 1 — §. j
Since all ¢ were chosen with equal probability, the number of bad 7 is %KM
equal to 2" times the probability than an 7 is bad, which is less than 3,
so this number is less than 2"Z. '@ the number of good i is greater e )
than 2*(1—%). Since ;41 —x; = 27", \/(:c?;H — )2 + (f(zip1 )\~ f(w:))?
is always at least 27" for any ¢, so the sum of this over all,z; is at least
1 — 5. 'Khen the sum of this over all ¢, good and bad, is jat least 2 —e.
This sum is precisely the Lp. Thus, for any ¢ > 0,/the arc length
must be at least 2 — ¢; thus the arc length must be at Jeast 2. Since it Yﬂ’ MTLJ‘—
cannot be > 2, it must equal 2.

G Theorem 5.2. The arc length of f,, for any p # 1,
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6. FURTHER POSSIBILITIES

A natural extension of this question is to consider n-sided coins @
dice. Many of the results from this paper can be generalized to dice with
an arbitrary number of sides, but the graphs of the resulting functions
become even more complex. One interesting case arises when we take
a 3-sided coin such that the probabilities of two of the faces are 1/2
each and the probability of the third face is 0. This gives the Cantor

function 3(@ the Devil’s staircase, as we are essentially converting

binary numbers to trinary. B
Y 4 “Jewu,g tJ [oeﬂfe‘
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F1GURE 3. The Devil’s staircase.
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