Math 127 Exam 3 Practice Problems

- 1. True or False:
 - (a) Any two distinct points in the plane determine exactly one line.
 - (b) Any line can be written in the form y = mx + b.
 - (c) The graph of any circle is symmetric with respect to the origin.
 - (d) If a graph has two points with the same y-coordinate, then it is not the graph of a function y = f(x).
 - (e) Every function y = f(x) has at least one *x*-intercept.
- 2. Given the points A(2, -2) and B(-1, 4):
 - (a) Find d(A, B)
 - (b) Find the midpoint of the line segment containing A and B.
 - (c) Find the equation for the line containing ${\cal A}$ and ${\cal B}$ in general form.
 - (d) Find the perpendicular bisector of the line segment containing A and B.
 - (e) Find the equation for the circle centered at B containing the point A.
 - (f) Find an equation for the vertical line containing B.
 - (g) Find an equation for the horizontal line containing A.
- 3. Find the equation for the following circles:
 - (a) The circle with center (4, -5) and radius $\sqrt{15}$
 - (b) The circle with diameter passing through the points (2, -2) and (-4, -2)
 - (c) The circle with center (2,1) and passing through the point (5,5)
- 4. Graph the circle with equation $x^2 + y^2 + 4x 6y 3 = 0$
- 5. Determine whether or not the following equations are symmetric with respect to the x-axis, y-axis, or the origin.
 - (a) $y = x^4 x^2$
 - (b) $y = x^3 2x$
 - (c) $x^2 y^2 = 1$
 - (d) y = 3x 2
- 6. Sketch the graphs of the following functions. Be sure to find and label all x and y intercepts.
 - (a) $f(x) = -\frac{3}{4}x + 2$
 - (b) $g(x) = x^3 4x$
 - (c) $y = \sqrt{x-4}$
 - (d) $y = 4 x^2$
- 7. For the given graph of f(x), find the following:

- (a) f(0)
- (b) f(3)
- (c) x, when f(x) = 2
- (d) The domain of f
- (e) The range of f
- (f) The intervals where f is decreasing.

- 8. Let $f(x) = x^2 2x$. Find and simplify the following:
 - (a) f(2), and $f(\frac{2}{3})$ (b) f(a+3)(c) f(2a-1)(d) $\frac{f(a+h) - f(a)}{h}$
- 9. Determine whether or not the following are functions:
 - (a) $\{(3,4), (5,7), (2,-1), (6,8), (8,6)\}$
 - (b) $\{(1,2), (3,7), (4,-12), (5,8), (7,2)\}$
 - (c) $\{(1,2), (2,3), (3,4), (4,5), (3,5)\}$
- 10. Find the domain of the following functions (put your answers in interval notation):
 - (a) $f(x) = \frac{2x+7}{2x^2-3x-2}$ (b) $f(x) = \frac{x^2+x-2}{x^2-4}$ (c) $f(x) = \frac{\sqrt{4-2x}}{x^2-1}$ (d) $f(x) = \frac{4}{\sqrt{3x-5}}$ (e) $f(x) = \frac{\sqrt{3-2x}}{x^2-1}$

(c)
$$f(w) = 2x^2 + x - 15$$

11. Given that $f(x) = \sqrt{2x-2}$ and $g(x) = \frac{4}{3x-2}$

- (a) Find g(6) and f(3a+1)
- (b) Find $\frac{g}{f}(3)$
- (c) Find $f \circ g(2)$

12. Given that $f(x) = \sqrt{3x - 2}$ and $g(x) = x^2 - 4$

- (a) Find $g \circ f(x)$
- (b) Find $f \circ g(x)$
- (c) Find the domain of $g \circ f(x)$. Give your answer in interval notation.
- (d) Find the domain of $\frac{f}{a}$. Give your answer in interval notation.
- (e) Find $\frac{g(a+h) g(a)}{h}$. Simplify your answer.
- 13. An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface in the shape of a circle. At any time t, in minutes, after the beginning of the leak, the radius of the circular oil slick on the surface is r(t) = 4t feet. Let $A(r) = \pi r^2$ represent the area of the circle of radius r.
 - (a) Find $(A \circ r)(t)$
 - (b) Explain what $(A \circ r)(t)$ is in practical terms.