Math 127 Exam 4 Practice Problems

1. Given the tables below, find the following:

- (e) $f(g^{-1}(9))$
- 2. Determine whether or not the following functions are one-to-one. You must justify your answer to each part.

 $\frac{8}{7}$

- (a) f(x) = 3x 5
- (b) $f(x) = x^3 x$
- (c) f(x) = 3|x| 2

(d)
$$g(x) = -\frac{1}{2x}$$

- 3. Use algebra to find the inverse of each of the following functions:
 - (a) f(x) = 5x 4
 - (b) $f(x) = \sqrt{x-4}$
 - (c) $f(x) = \frac{5x}{3-x}$

(d)
$$f(x) = \frac{2x-3}{3x+4}$$

- 4. Suppose you have \$2,000 to invest.
 - (a) Find the amount you would have after 5 years if you deposit your \$2,000 in an account that pays 6% annual interest compounded monthly.
 - (b) Find the amount you would have after 5 years if you deposit your \$2,000 in an account that pays 5% annual interest compounded continuously.
 - (c) Find the amount of time it would take your initial investment to double if you invested it in an account that pays 4% annual interest compounded quarterly.
 - (d) Find the interest rate that would be required for your initial investment to double in 7 years if it were invested it in an account whose annual interest is compounded continuously.
- 5. Translate each of the following expressions into exponential form:
 - (a) $\log_5 x = y$
 - (b) $\log_z 5 = y$
 - (c) $\log_{y} x = 5$

- 6. Find the *exact* value of each of the following:
 - (a) $\log_2 1(1)$
 - (b) $\log_7(0)$
 - (c) $\log_2(\frac{1}{8})$
 - (d) $\log_3(27)$
 - (e) $\ln(e^2)$
 - (f) $\log .0001$
 - (g) $\log_9(27)$
 - (h) $7^{\log_7(\pi)}$
- 7. Use properties of logarithms to expand the following expression:

$$\log\left(\frac{x^4z^2}{\sqrt[3]{y}}\right)$$

8. Use the properties of logarithms to write the following as a single logarithm:

$$\frac{3}{2}\log_b x^3 y^4 - \frac{2}{3}\log_b x^4 y^3 - 2\log_b xy$$

9. Solve the following equations (give exact answers whenever possible):

(a)
$$e^{3x-2} = e^{4-5x}$$

(b) $9^{2x} = 27(3)^{2x+1}$
(c) $\log_2(3x^2 - 3) = \log_2(x^2 + x)$
(d) $\log_5(x^2 + 21) = 2$
(e) $\log_2(2x) + \log_2(x - 3) = 3$
(f) $\log(\sqrt[4]{x+1}) = \frac{1}{2}$
(g) $e^{2x-1} = 3$
(h) $4^{2x-1} = 3^{5x}$

- 10. Use the change of base formula to approximate the following:
 - (a) $\log_5 10$
 - (b) $\log_9 12$
 - $(c) \ \log_{15} 7$