Math 127 - College Algebra Handout: Properties of Exponents and Radicals

A. Exponents

Definition: $a^n = a \cdot a \cdot a \cdot a \cdot \dots \cdot a$ (a multiplied by itself n times)

Properties:

1. $a^{0} = 1$ 2. $a^{-n} = \frac{1}{a^{n}}$ 3. $a^{m} \cdot a^{n} = a^{m+n}$ 4. $(a^{m})^{n} = a^{mn}$ 5. $(ab)^{n} = a^{n}b^{n}$ 6. $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$ 7. $\frac{a^{m}}{a^{n}} = a^{m-n} = \frac{1}{a^{n-m}}$ 8. $\frac{a^{-m}}{b^{-n}} = \frac{b^{n}}{a^{m}}$ 9. $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$

B. Radicals:

Definition: Suppose *n* is a positive integer and *a* is a real number. Then we define the *n*th root of *a*, denoted by $\sqrt[n]{a}$ as follows:

- If a = 0, then $\sqrt[n]{a} = 0$.
- If a > 0 then $\sqrt[n]{a}$ is the *positive* real number b such that $b^n = a$.
- If a < 0 and n is odd, then $\sqrt[n]{a}$ is the negative real number b such that $b^n = a$.

• If a < 0 and n is **even**, then $\sqrt[n]{a}$ is not a real number, since there is no real number b such that $b^n = a$. Examples:

(a) $\sqrt[2]{9} = \sqrt{9} = 3$ since $3 \cdot 3 = 9$. (b) $\sqrt[3]{-8} = -2$ since $(-2) \cdot (-2) \cdot (-2) = -8$.

(c) $\sqrt{-16}$ is not a real number. (notice that $4 \cdot 4 = 16$, and $(-4) \cdot (-4) = 16$)

Properties:

- 1. $(\sqrt[n]{a})^n = a$ if $\sqrt[n]{a}$ is a real number.
- 2. $\sqrt[n]{a^n} = a$ if $a \ge 0$.
- 3. $\sqrt[n]{a^n} = a$ if a < 0 and n is odd.
- 4. $\sqrt[n]{a^n} = |a|$ if a < 0 and n is even.
- 5. $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$ provided both exist.
- 6. $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ provided both exist.
- 7. $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$ provided both exist.

Warning!!

- (a) In general, $\sqrt{a^2 + b^2} \neq a + b$
- (b) Also, in general, $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$