The Inverse of a Matrix

A. Definitions:

1. The identity matrix if size n, denoted I_n , is a square matrix with 1s along the main diagonal and 0s everywhere else.

For example,
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

2. The inverse of a square $n \times n$ matrix A (if one exists) is an $n \times n$ matrix A^{-1} satisfying $AA^{-1} = A^{-1}A = I_n$

Note: The reason I_n is called the identity matrix (of size n) is because given any $n \times n$ matrix A, $A \cdot I_n = I_n \cdot A = A$. That is, I_n "acts like the number 1" when multiplied with any $n \times n$ matrix.

Examples:

1. Let
$$A = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix}$$
. Then $AI_n = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix}$

Similarly,
$$I_n A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix}$$

2. Let
$$A = \begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$. Then: $AB = \begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix} = \begin{bmatrix} 16 - 15 & 40 - 40 \\ -6 + 6 & -15 + 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\text{and } BA = \left[\begin{array}{cc} 2 & 5 \\ 3 & 8 \end{array} \right] \left[\begin{array}{cc} 8 & -5 \\ -3 & 2 \end{array} \right] = \left[\begin{array}{cc} 16 - 15 & -10 + 10 \\ 24 - 24 & -15 + 16 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]. \text{ Thus } B = A^{-1}.$$

B. Finding the Inverse of a Matrix:

Given a square matrix A, we find its inverse (provided one exists) as follows:

- 1. Form the augmented matrix [A|I]
- 2. Use row operations to put the "A side" of this augmented matrix into reduced row echelon form.
- 3. If the resulting matrix has the form [I|B], then $B = A^{-1}$

Examples:

1. Let $A = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$. Then the augmented matrix is: $\begin{bmatrix} 5 & 7 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix}$. We now reduce the augmented matrix using row operations:

$$\begin{bmatrix} 5 & 7 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix}_{R_1 - 2\underline{R_2}} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -2 \\ 2 & 3 & 0 & 1 \end{bmatrix}_{R_2 - 2\underline{R_1}} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_2 - 2\underline{R_1}} \rightarrow \begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}_{R_1 - R_2} \rightarrow \begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5$$

Therefore,
$$A^{-1} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$

2. Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ We reduce the augmented matrix using row operations:

$$\left[\begin{array}{ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 0 & 0 & 1 \end{array} \right] \stackrel{R_2 - R_1}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 1 & 0 & -1 & 1 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 0 & 0 & 1 \end{array} \right] \stackrel{R_2 - 3R_1}{\stackrel{R_3 - 2R_1}{\longrightarrow}} \quad \left[\begin{array}{ccc|c} 1 & 1 & 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 3 & -2 & 0 \\ 0 & -1 & 2 & 2 & -2 & 1 \end{array} \right]$$

C. Solving Systems of Equations Using Inverse Matrices:

Now that we know how to find the inverse of a square matrix, if we are given a system of n equations in n unknowns, there is an alternative way to solve the system. We first need to translate our system of equations into a matrix equation of the form: AX = B. We do so as indicated by the following examples:

Example 1: Given the system of equations: $\begin{cases} 5x + 7y = 3 \\ 2x + 3y = -2 \end{cases}$

Let $A = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, and $B = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Then the matrix equation form for this system is:

$$\left[\begin{array}{cc} 5 & 7 \\ 2 & 3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 3 \\ -2 \end{array}\right]$$

Example 2: Given the system of equations: $\begin{cases} 2x + y + z = 4 \\ 3x + 2y + z = -1 \\ 2x + y + 2z = 0 \end{cases}$

Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, and $B = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$. Then the matrix equation form for this system is:

$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$$

To solve a matrix equation of the form: AX = B, notice that if we multiply both sides of this equation on the left by A^{-1} we get:

 $A^{-1}AX = A^{-1}B$, or, by this inverse property of matrices, $IX = A^{-1}B$, or $X = A^{-1}B$. This new form allows us to "read off" the solution to the original system of equations.

Example 1: Again looking at the system of equations: $\begin{cases} 5x + 7y = 3 \\ 2x + 3y = -2 \end{cases}$, the matrix equation form for this system is:

$$\left[\begin{array}{cc} 5 & 7 \\ 2 & 3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 3 \\ -2 \end{array}\right]$$

Previously, we computed $A^{-1} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$.

Therefore, $X = A^{-1}B$ or $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 9+14 \\ -6-10 \end{bmatrix} = \begin{bmatrix} 23 \\ -16 \end{bmatrix}$

Check: 5(23) + 7(-16) = 115 - 112 = 3, and 2(23) + 3(-16) = 46 - 48 = -2

Example 2: Again looking at the system of equations: $\begin{cases} 2x + y + z = 4 \\ 3x + 2y + z = -1 \\ 2x + y + 2z = 0 \end{cases}$, the matrix equation form for this system is:

$$\left[\begin{array}{ccc} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} 4 \\ -1 \\ 0 \end{array}\right]$$

Previously, we computed $A^{-1}=\left[\begin{array}{ccc}3&-1&-1\\-4&2&1\\-1&0&1\end{array}\right]$

Therefore, $X = A^{-1}B$ or $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 \\ -4 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 12+1+0 \\ -16-2+0 \\ -4+0+0 \end{bmatrix} = \begin{bmatrix} 13 \\ -18 \\ -4 \end{bmatrix}$

Check: 2(13) + (-18) + (-4) = 26 - 18 - 4 = 4, 3(13) + 2(-18) + (-4) = 39 - 36 - 4 = -1, and 2(13) + (-18) + 2(-4) = 26 - 18 - 8 = 0