Math 229 Algebra Review 05/30/2008

A. Exponents

Definition: $a^n = a \cdot a \cdot a \cdot a \cdot \dots \cdot a$ (*a* multiplied by itself *n* times)

Properties:

- 1. $a^0 = 1$ 2. $a^{-n} = \frac{1}{a^n}$
- 3. $a^m \cdot a^n = a^{m+n}$
- 4. $(a^m)^n = a^{mn}$
- 5. $(ab)^n = a^n b^n$

6.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

7.
$$\frac{a^m}{a^n} = a^{m-n} = \frac{1}{a^{n-m}}$$

- 8. $\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$
- 9. $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

C. Algebraic Expressions

An **algebraic expression** is the result of applying mathematical operations to some collection of variables and real numbers.

• A monomial is an expression of the form ax^n , where n is a natural number and a is a real number.

• A **polynomial** is any expression of the form $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. When applying addition, subtraction, multiplication, and division to a polynomial, we simplify by combining "like terms".

Example: $3x^7 - 4x^5 + 12x^2 - 7x + 22$

Special Product and Factoring Formulas:

- 1. $(x-y)(x+y) = x^2 y^2$ [Difference of Squares]
- 2. $(x \pm y)^2 = x^2 \pm 2xy + y^2$ [Perfect Square]
- 3. $(x \pm y)^3 = x^3 \pm 3x^2y + 3xy^2 \pm y^3$ [Perfect Cube]
- 4. $x^3 + y^3 = (x + y)(x^2 xy + y^2)$ [Sum of Cubes]

5.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

[Difference of Cubes]

6. $x^2 + y^2$ [Sum of Squares - Does not factor!]

B. Radicals

Definition: Suppose *n* is a positive integer and *a* is a real number. Then we define the *n*th root of *a*, denoted by $\sqrt[n]{a}$ as follows:

• If a = 0, then $\sqrt[n]{a} = 0$.

• If a > 0 then $\sqrt[n]{a}$ is the *positive* real number *b* such that $b^n = a$.

• If a < 0 and n is **odd**, then $\sqrt[n]{a}$ is the *negative* real number b such that $b^n = a$.

• If a < 0 and n is **even**, then $\sqrt[n]{a}$ is not a real number, since there is no real number b such that $b^n = a$.

Examples:

- (a) $\sqrt[2]{9} = \sqrt{9} = 3$ since $3 \cdot 3 = 9$.
- (b) $\sqrt[3]{-8} = -2$ since $(-2) \cdot (-2) \cdot (-2) = -8$.

(c) $\sqrt{-16}$ is not a real number. (notice that $4 \cdot 4 = 16$, and $(-4) \cdot (-4) = 16$)

Properties:

- 1. $(\sqrt[n]{a})^n = a$ if $\sqrt[n]{a}$ is a real number.
- 2. $\sqrt[n]{a^n} = a$ if $a \ge 0$.
- 3. $\sqrt[n]{a^n} = a$ if a < 0 and n is odd.
- 4. $\sqrt[n]{a^n} = |a|$ if a < 0 and n is even.
- 5. $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$ provided both exist.
- 6. $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ provided both exist.
- 7. $\sqrt[m]{\sqrt{n/a}} = \sqrt[mn]{a}$ provided both exist.

Warning!!

(a) In general, $\sqrt{a^2 + b^2} \neq a + b$

(b) Also, in general, $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

D. Algebraic Fractions

- An algebraic fraction is the quotient of two polynomials.
- To simplify algebraic fractions, we "factor and reduce".
- To change from division to multiplication, we multiply by the reciprocal.
- \bullet When adding or subtracting fractions, we need to find a $common\ denominator$

Examples:

(a)
$$\frac{x-3}{x^2-1} \div \frac{x^2-x-6}{x+1} = \frac{x-3}{x^2-1} \div \frac{x+1}{x^2-x-6}$$

 $= \frac{x-3}{(x+1)(x-1)} \div \frac{x+1}{(x-3)(x+2)} = \frac{1}{(x-1)(x+2)}$
(b) $\frac{2x}{x-2} - \frac{4}{+3} = \frac{2x(x+3)}{(x-2)(x+3)} - \frac{4(x-2)}{(x-2)(x+3)}$
 $= \frac{2x^2+6x-4x+8}{(x-2)(x+3)} = \frac{2x^2+2x+8}{(x-2)(x+3)} = \frac{2(x^2+x+4)}{(x-2)(x+3)}$