Differentiation of Exponential and Logarithmic Functions

The Derivative of the Exponential Function: The basic rule for differentiating the exponential function is: $\frac{d}{dx}e^{x} = e^{x}$

We'll not prove this rule, but it is in fact true that the exponential function is its own derivative!

The Chain Rule for Exponentials:

$$\frac{d}{dx}e^{f(x)} = f'(x) \cdot e^{f(x)}$$

Examples of Derivatives Involving Exponential Functions:

- 1. If $f(x) = e^{3x}$, then, using the Chain Rule for Exponentials: $f'(x) = e^{3x} \cdot (3) = 3e^{3x}$.
- 2. If $g(x) = e^{x^2}$, then, using the Chain Rule for Exponentials: $g'(x) = e^{x^2} \cdot (2x) = 2xe^{x^2}$.
- 3. If $h(x) = x^2 e^{5x}$, then, by the product rule: $h'(x) = 2xe^{5x} + 5x^2e^{5x}$.
- 4. If $k(x) = (e^{2x} + 3x^2)^{\frac{5}{2}} = \frac{5}{2}(e^{2x} + 3x^2)^{\frac{3}{2}}(2e^{2x} + 6x) = (5e^{2x} + 15x)(e^{2x} + 3x^2)^{\frac{3}{2}}$
- 5. If $\ell(x) = e^{e^{x^2}}$, then, applying the Chain Rule for Exponentials several times: $\ell'(x) = e^{e^{x^2}} \cdot e^{x^2} \cdot x^2$

Applications of the Derivative Involving Exponentials:

1. Find the slope of the tangent line to $f(x) = 1 - e^{2x}$ at the point where f crosses the x-axis. Then find the equation of the tangent line.

First notice that if f(x) = 0, then $0 = 1 - e^{2x}$, so $e^{2x} = 1$, or, $\ln(e^{2x}) = \ln(1)$. Therefore, 2x = 0, so x = 0. Therefore, the point of tangency is (0, 0). Next, $f'(x) = -2e^{2x}$, so $m = f'(0) = -2e^0 = -2(1) = -2$. Thus, the tangent line has equation y = -2x.

2. Completely Analyze the first and second derivatives of $f(t) = te^{2t}$.

The Derivative of Logarithmic Functions: The basic rule for differentiating the natural logarithmic function is:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Proof:

Recall that by the inverse property of exponentials and logarithms, $e^{\ln x} = x$ for x > 0. Differentiating both sides of this equation, $\frac{d}{dx} \left(e^{\ln x} \right) = \frac{d}{dx} x$ Which, by the chain rule, is: $\frac{d}{dx} (\ln x) \cdot e^{\ln x} = 1$, or, again applying the inverse property: $\frac{d}{dx} (\ln x) \cdot x = 1$. Therefore, dividing both sides by x: $\frac{d}{dx} (\ln x) = \frac{1}{x}$.

The Chain Rule for Logarithmic Functions:

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$$

Examples of Derivatives Involving Logarithmic Functions:

- 1. If $f(x) = x^2 \ln x$, then, by the product rule: $f'(x) = 2x \ln x + x^2 \cdot \frac{1}{x} = 2x \ln x + x$.
- 2. If $g(x) = \ln(x^2)$, then, using the Chain Rule: $g'(x) = \frac{2x}{x^2} = \frac{2}{x}$. Alternatively, we could have used the properties of logarithms to rewrite $g(x) = \ln(x^2)$ as $g(x) = 2\ln x$. Then $g'(x) = 2 \cdot \frac{1}{x} = \frac{2}{x}$.
- 3. If $h(x) = \ln[(x^2 + 1)(3x 2)^3]$, then, again using the properties of logarithms to rewrite h(x), $h(x) = \ln(x^2 + 1) + \ln(3x - 2)^3 = \ln(x^2 + 1) + 3\ln(3x - 2)$. Thus $h'(x) = \frac{2x}{x^2 + 1} + 3 \cdot \frac{3}{3x - 2} = \frac{2x}{x^2 + 1} + \frac{9}{3x - 2}$.

Logarithmic Differentiation: We will skip this part of the Section in the interest of time.