Math 229 Exam 4 Practice Problems

1. Determine whether the following are True or False:

(a)
$$\ln\left(\frac{x^3}{(x+1)(x-1)}\right) = 3\ln x - \ln(x+1) + \ln(x-1)$$

(b) $e^{\ln(x^2+1)} = x^2 + 1$
(c) $e^{x^2} \cdot e^{3x} = e^{3x^3}$
(d) $\frac{\ln(4x)}{\ln(2x)} = \ln 2$
(e) $\ln\left(e^{x^2} - 4\right) = x^2 - \ln 4$

- 2. Find the exact value of the following logarithmic expressions:
 - (a) $\log_2(32)$ (c) $\log_5(1)$
 - (b) $\log_3\left(\frac{1}{27}\right)$ (d) $\log_4 32$

3. Use the laws of logarithms to simplify the expression: $\ln\left(\frac{x^2(x-1)^{\frac{5}{2}}}{(x-4)^3}\right)$

- 4. (a) Suppose you invest \$10,000 in a savings account that pays 3% annual interest compounded monthly. How much money will be in the account after 6 years?
 - (b) How long would it take \$5,000 invested at 6% annual interest compounded continuously to triple?
 - (c) Find the interest rate needed for an investment of \$2,000 to double in 6 years if the interest is comounded quarterly.
- 5. Suppose that a culture of bacteria that initially has 500 cells grows to 10,000 cells in 12 hours.
 - (a) Find a function f(t) that gives the number of cells in the culture as a function of time (in hours), assuming that this population grows continuously and exponentially.
 - (b) How long will it take for the culture to reach 1,000,000 cells?
- 6. Compute the derivatives of the following functions. You do not need to simplify your answers.

(a)
$$f(x) = e^{3x^2}$$

- (b) $g(x) = \ln(3x^2 4x + 6)$
- (c) $h(x) = (x^2 + 1)e^{x^2 + 1}$
- (d) $k(x) = x^2 \ln(e^x + 1)$

(e)
$$f(x) = \ln\left(\frac{x^2}{(2x-1)^3}\right)$$

(f)
$$g(x) = e^{e^{2x}}$$

(g)
$$h(x) = \ln(x^2 + 1)e^{x^3}$$

- 7. Find the tangent line to $f(x) = x \ln(2x)$ when $x = \frac{1}{2}$
- 8. Find the tangent line to $f(x) = 2xe^{2x-4}$ when x = 2
- 9. Determine the intervals where the function $g(t) = t^4 e^{2t}$ in increasing and the intervals where it is decreasing.
- 10. Find the absolute extrema of $g(t) = t^2 e^{2t}$ on the interval [-2, 2].

11. Suppose
$$\int_0^2 f(x) \, dx = 4$$
 and $\int_0^2 g(x) \, dx = 2$. Find $\int_0^2 2f(x) - g(x) \, dx$

12. Evaluate the following integrals:

ſ

(a)
$$\int 6x^3 - 4x^{\frac{1}{2}} dx$$

(b) $\int 5x^4 - x^{\frac{3}{2}} dx$
(c) $\int \frac{4x^3 - 3x^2 + 2x}{2x^2} dx$
(d) $\int_{-1}^{1} 3x^5 - 4x^3 dx$
(e) $\int_{0}^{3} 4x^2 - e^{3x} dx$
(f) $\int_{0}^{4} e^{3x} + x^{-\frac{1}{2}} dx$

13. Suppose marginal revenue, R'(t) is given by the graph below, where t in in months and R'(t) is in \$1000s of dollars per month. Find the total revenue from t = 0 to t = 6.

14. Find the average value of $f(x) = x^2 - \frac{1}{x^2}$ for $1 \le x \le 3$.

- 15. Find the area of the region enclosed by the graphs f(x) = x and $g(x) = \sqrt{x}$.
- 16. Find the area of the region enclosed by the graphs $f(x) = x^2 4$ and $g(x) = 4 x^2$.