Logarithms

Definition: The **Logarithm of** x **to the base** b is defined as follows: $y = \log_b x$ if and only if $x = b^y$. for x > 0 and $b > 0, b \neq 1$. A logarithm basically asks: "what power would I need to raise the base b to in order to get x as the result?"

Examples:

(a) $\log_2 8 = 3$ since $8 = 2^3$ (b) $\log_2 \frac{1}{2} = -1$ since $\frac{1}{2} = 2^{-1}$ (c) $\log_3 81 = 4$ since $81 = 3^4$ (d) $\log_8 \frac{1}{64} = -2$ since $\frac{1}{64} = 8^{-2}$

More Examples:

(a) Suppose $\log_5 x = 3$. Find x. Since $\log_5 x = 3$, $x = 5^3 = 125$. (b) Suppose $\log_z 16 = 2$. Find z. Since $\log_z 16 = 2$, $z^2 = 16$, so $z = \pm 4$. But since we know that z > 0, then z = 4.

Notation:

(1) If b = 10, we abbreviate $\log_{10} x$ as $\log x$. (2) If b = e, we abbreviate $\log_e x$ as $\ln x$.

Properties of logarithms: Let m and n be positive real numbers.

1.	$\log_b mn = \log_b m + \log_b n$	5.	$\log_b b = 1$
2.	$\log_b \frac{m}{n} = \log_b m - \log_b n$	6. lo	log. $b^x - x$
3.	$\log_b m^n = n \cdot \log_b m$		$\log_b v = x$
4.	$\log_b 1 = 0$	7.	$b^{\log_b x} = x$

Examples:

- 1. $\log 16 = \log 4^2 = 2 \log 4$
- 2. $\log \frac{7}{16} = \log 7 \log 16 = \log 7 \log 4^2 = \log 7 2\log 4$
- 3. $\log 24 = (\log 8 \cdot 3) = \log 8 + \log 3 = \log 2^3 + \log 3 = 3 \log 2 + \log 3$
- 4. $\ln\left(\frac{e^{2x}}{e^x}\right) = \ln e^2 x \ln e^x = 2x \ln e x \ln e = 2x x = x$

Graphs of logarithmic functions:

Properties of Logarithmic Graphs:

- 1. Domain: $(0, \infty)$
- 2. Range: $(-\infty, \infty)$
- 3. y-intercept: none. x intercept (1,0)

- 4. Continuous on $(0, \infty)$
- 5. Increasing if b > 1. Decreasing if 0 < b < 1.