The Inverse of a Matrix

A. Definitions:

1. The *identity matrix if size* n, denoted I_n , is a square matrix with 1s along the main diagonal and 0s everywhere else.

For example, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $I_3 =$ \lceil $\overline{1}$ 1 0 0 0 1 0 0 0 1 1 $\overline{1}$

2. The *inverse* of a square $n \times n$ matrix A (if one exists) is an $n \times n$ matrix A^{-1} satisfying $AA^{-1} = A^{-1}A = I_n$

Note: The reason I_n is called the identity matrix (of size n) is because given any $n \times n$ matrix $A, A \cdot I_n = I_n \cdot A = A$. That is, I_n "acts like the number 1" when multiplied with any $n \times n$ matrix. Examples:

1. Let
$$
A = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix}
$$
. Then $AI_n = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix}$
\nSimilarly, $I_n A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 6 \\ 7 & -4 & 10 \end{bmatrix}$

2. Let
$$
A = \begin{bmatrix} 8 & -5 \ -3 & 2 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 2 & 5 \ 3 & 8 \end{bmatrix}$. Then: $AB = \begin{bmatrix} 8 & -5 \ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \ 3 & 8 \end{bmatrix} = \begin{bmatrix} 16 - 15 & 40 - 40 \ -6 + 6 & -15 + 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$
and $BA = \begin{bmatrix} 2 & 5 \ 3 & 8 \end{bmatrix} \begin{bmatrix} 8 & -5 \ -3 & 2 \end{bmatrix} = \begin{bmatrix} 16 - 15 & -10 + 10 \ 24 - 24 & -15 + 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$. Thus $B = A^{-1}$.

B. Finding the Inverse of a Matrix:

Given a square matrix A , we find its inverse (provided one exists) as follows:

- 1. Form the augmented matrix $[A|I]$
- 2. Use row operations to put the "A side" of this augmented matrix into reduced row echelon form.
- 3. If the resulting matrix has the form $[I|B]$, then $B = A^{-1}$

Examples:

1. Let $A = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$. Then the augmented matrix is: $\begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. We now reduce the augmented matrix using row operations: $\begin{bmatrix} 5 & 7 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix}$ $R_1-2\underline{R_2}$ \rightarrow $\begin{bmatrix} 1 & 1 & 1 & -2 \\ 2 & 3 & 0 & 1 \end{bmatrix}$ $R_2-2\underline{R_1}$ \rightarrow $\begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 1 & -2 & 5 \end{bmatrix}$ R_1-R_2 \rightarrow $\begin{bmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{bmatrix}$ Therefore, $A^{-1} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$ 2. Let $A =$ \lceil $\overline{1}$ 2 1 1 3 2 1 2 1 2 1 We reduce the augmented matrix using row operations: $\sqrt{ }$ $\overline{1}$ 2 1 1 1 0 0 3 2 1 0 1 0 $2 \quad 1 \quad 2 \quad 0 \quad 0 \quad 1$ 1 $R_2-R_1 \rightarrow$ $\sqrt{ }$ $\overline{1}$ 1 1 0 −1 1 0 3 2 1 0 1 0 $2 \quad 1 \quad 2 \quad 0 \quad 0 \quad 1$ 1 R_2-3R_1
 R_3-2R_1 \lceil $\overline{1}$ $1 \quad 1 \quad 0 \mid -1 \quad 1 \quad 0$ $0 \quad -1 \quad 1 \mid 3 \quad -2 \quad 0$ $0 \quad -1 \quad 2 \quad 2 \quad -2 \quad 1$ 1 \mathbf{I} $R_3-R_2 \longrightarrow$ $\sqrt{ }$ $\overline{1}$ $1 \quad 1 \quad 0 \mid -1 \quad 1 \quad 0$ $0 \quad -1 \quad 1 \mid 3 \quad -2 \quad 0$ $0 \t 0 \t 1 \t -1 \t 0 \t 1$ 1 $R_1+R_2 \rightarrow$ $\sqrt{ }$ $\overline{}$ $1 \t0 \t1 \t2 \t-1 \t0$ $0 \quad -1 \quad 1 \mid 3 \quad -2 \quad 0$ $0 \t 0 \t 1 \vert -1 \t 0 \t 1$ 1 $\begin{array}{c} R_1-R_3 \ R_2-R_3 \end{array}$ $\sqrt{ }$ $\overline{}$ $1 \t0 \t0 \t3 \t-1 \t-1$ $0 \quad -1 \quad 0 \quad 4 \quad -2 \quad -1$ $0 \t 0 \t 1 \vert -1 \t 0 \t 1$ 1 $\overline{1}$ $-R_2 \longrightarrow$ \lceil $\overline{1}$ $1 \t0 \t0 \t3 \t-1 \t-1$ $0 \quad 1 \quad 0 \mid -4 \quad 2 \quad 1$ $0 \t0 \t1 \t-1 \t0 \t1$ 1 . Therefore, $A^{-1} =$ $\sqrt{ }$ $\overline{1}$ 3 −1 −1 −4 2 1 −1 0 1 1 $\overline{1}$

C. Solving Systems of Equations Using Inverse Matrices:

Now that we know how to find the inverse of a square matrix, if we are given a system of n equations in n unknowns, there is an alternative way to solve the system. We first need to translate our system of equations into a matrix equation of the form: $AX = B$. We do so as indicated by the following examples:

Example 1: Given the system of equations: $\begin{cases} 5x + 7y = 3 \\ 2x + 3y = 3 \end{cases}$ $2x + 3y = -2$

Let $A = \begin{bmatrix} 5 & 7 \ 2 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x \ y \end{bmatrix}$ \hat{y} $\Big]$, and $B = \Big[\begin{array}{c} 3 \end{array} \Big]$ -2 . Then the matrix equation form for this system is: $\left[\begin{array}{cc} 5 & 7 \\ 2 & 3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$ $=\begin{bmatrix}3\\3\end{bmatrix}$ -2 1

Example 2: Given the system of equations: $\sqrt{ }$ J \mathcal{L} $2x + y + z = 4$ $3x + 2y + z = -1$ $2x + y + 2z = 0$

Let $A =$ $\sqrt{ }$ $\overline{1}$ 2 1 1 3 2 1 2 1 2 1 $\Big\vert$, $X =$ $\sqrt{ }$ $\overline{1}$ \boldsymbol{x} \hat{y} z 1 $\Big\vert$, and $B =$ $\sqrt{ }$ $\overline{1}$ 4 −1 0 1 . Then the matrix equation form for this system is: $\sqrt{ }$ $\overline{}$ 2 1 1 3 2 1 2 1 2 1 \mathbf{I} \lceil $\overline{1}$ \boldsymbol{x} \hat{y} z 1 \vert = $\sqrt{ }$ $\overline{}$ 4 −1 $\boldsymbol{0}$ 1 \mathbf{I}

To solve a matrix equation of the form: $AX = B$, notice that if we multiply both sides of this equation on the left by A^{-1} , we get:

 $A^{-1}AX = A^{-1}B$, or, by this inverse property of matrices, $IX = A^{-1}B$, or $X = A^{-1}B$. This new form allows us to "read off" the solution to the original system of equations.

Example 1: Again looking at the system of equations: $\begin{cases} 5x + 7y = 3 \\ 2x + 3y = 3 \end{cases}$ $2x + 3y = -2$, the matrix equation form for this system is:

 $\left[\begin{array}{cc} 5 & 7 \\ 2 & 3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$ $=\begin{bmatrix}3\\3\end{bmatrix}$ -2 1

Previously, we computed $A^{-1} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$. Therefore, $X = A^{-1}B$ or $\begin{bmatrix} x \\ y \end{bmatrix}$ \hat{y} $\begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ $\begin{bmatrix} 9+14 \\ -6-10 \end{bmatrix} = \begin{bmatrix} 23 \\ -16 \end{bmatrix}$ Check: $5(23) + 7(-16) = 115 - 112 = 3$, and $2(23) + 3(-16) = 46 - 48 = -2$

Example 2: Again looking at the system of equations: $\sqrt{ }$ J \mathcal{L} $2x + y + z = 4$ $3x + 2y + z = -1$ $2x + y + 2z = 0$, the matrix equation form for this system is:

 $\sqrt{ }$ $\overline{1}$ 2 1 1 3 2 1 2 1 2 1 \mathbf{I} $\sqrt{ }$ $\overline{1}$ \boldsymbol{x} \hat{y} z 1 \vert = $\sqrt{ }$ $\overline{1}$ 4 −1 θ 1 \mathbf{I} Previously, we computed $A^{-1} =$ $\sqrt{ }$ $\overline{}$ 3 −1 −1 −4 2 1 −1 0 1 1 $\overline{1}$ Therefore, $X = A^{-1}B$ or $\sqrt{ }$ $\overline{1}$ \boldsymbol{x} \hat{y} z 1 \vert = \lceil $\overline{1}$ $3 -1 -1$ −4 2 1 −1 0 1 1 $\overline{ }$ $\sqrt{ }$ $\overline{1}$ 4 −1 0 1 \vert = $\sqrt{ }$ $\overline{1}$ $12 + 1 + 0$ $-16 - 2 + 0$ $-4 + 0 + 0$ 1 \vert = $\sqrt{ }$ $\overline{1}$ 13 −18 −4 1 $\overline{1}$ Check: $2(13) + (-18) + (-4) = 26 - 18 - 4 = 4$, $3(13) + 2(-18) + (-4) = 39 - 36 - 4 = -1$, and $2(13) + (-18) + 2(-4) =$ $26 - 18 - 8 = 0$