Recall: The Logarithm of x to the base b is defined as follows: $y = \log_b x$ if and only if $x = b^y$. for x > 0 and $b > 0, b \neq 1$. A logarithm basically asks: "what power would I need to raise the base b to in order to get x as the result?"

Properties of logarithms: Let m and n be positive real numbers.

1.	$\log_b mn = \log_b m + \log_b n$	5.	$\log_b b = 1$
2.	$\log_b \frac{m}{n} = \log_b m - \log_b n$	6. log	log $b^x - x$
3.	$\log_b m^n = n \cdot \log_b m$		$\log_b v = x$
4.	$\log_b 1 = 0$	7.	$b^{\log_b x} = x$

Examples: Use the Properties of Logarithms to expand the following:

- 1. $\log_b 16 = \log_b 2^4 = 4 \log_b 2$
- 2. $\log_b \frac{7}{16} = \log_b 7 \log_b 16 = \log_b 7 \log_b 2^4 = \log_b 7 4\log_b 2$

3.
$$\log_b \left(\frac{(x+4)^3(x-1)^2}{\sqrt{x+1}} \right)$$
$$= \log_b \left((x+4)^3(x-1)^2 \right) - \log_b \left(\sqrt{x+1} \right)$$
$$= \log_b (x+4)^3 + \log_b (x-1)^2 - \log_b (x+1)^{\frac{1}{2}}$$
$$= 3 \log_b (x+4) + 2 \log_b (x-1) - \frac{1}{2} \log_b (x+1)$$

Example: Use the Properties of Logarithms to combine the following into a single logarithm: $= \frac{5}{2} \log_b(2x-7) - \log_b(3x+1) - \frac{3}{2} \log_b(x+1)$ $= \frac{5}{2} \log_b(2x-7) - [\log_b(3x+1) + \frac{3}{2} \log_b(x+1)]$ $= \log_b(2x-7)^{\frac{5}{2}} - [\log_b(3x+1) + \log_b(x+1)^{\frac{3}{2}}]$ $= \log_b(2x-7)^{\frac{5}{2}} - [\log_b(3x+1)(x+1)^{\frac{3}{2}}]$

$$= \log_b \left(\frac{(2x-7)^{\frac{5}{2}}}{\log_b(3x+1) + \log_b(x^1+1)^{\frac{3}{2}}} \right)$$

Examples: Solving Logarithmic Equations: 1. $\log_3(x+6) - \log_3(x-2) = 2$

Then
$$\log_3\left(\frac{x+6}{x-2}\right) = 2$$
, so $3^2 = \frac{x+6}{x-2}$

Therefore, 9(x-2) = x+6, or 9x - 18 = x+6. Hence 8x = 24, or x = 3

Check:
$$\log_3(3+6) - \log_3(3-2) = \log_3(9) - \log_3(1) = 2 - 0 = 2$$

2.
$$\ln x = 1 - \ln(3x - 2) - \ln e$$

Then $\ln x + \ln(3x - 2) = 1 - 1$, or $\ln(x(3x - 2)) = 0$

But then, exponentiating both sides: $e^{\ln(x(3x-2))} = e^0$, or x(3x-2) = 1

Thus $3x^2 - 2x - 1 = 0$, or (3x + 1)(x - 1) = 0.

Hence 3x = -1, or $x = -\frac{1}{3}$ and x = 1

Notice that $x = -\frac{1}{3}$ does not check while x = 1 does check.