Math 127 Logarithms

Definition: The **Logarithm of** x to the base b is defined as follows: $y = \log_b x$ if and only if $x = b^y$. for x > 0 and $b > 0, b \neq 1$. A logarithm basically asks: "what power would I need to raise the base b to in order to get x as the result?"

Examples:

- I	
Logarithmic Form:	Exponential Form:
(a) $\log_2 8 = 3$	$8 = 2^3$
(b) $\log_2 \frac{1}{2} = -1$	$\frac{1}{2} = 2^{-1}$
(c) $\log_3 \bar{81} = 4$	$ \tilde{8}1 = 3^4 $
(d) $\log_8 \frac{1}{64} = -2$	$\frac{1}{64} = 8^{-2}$
(e) $\log_2 - 8$ is undefined	$2^y \neq -8$ for any possible y!

Solving Logarithmic Equations:

Note: Since logarithmic functions are inverses of exponential functions, logarithmic functions are one-to-one. Therefore, as before, we can make use of the definition of a one-to-one function in order to solve basic equations involving logarithmic functions.

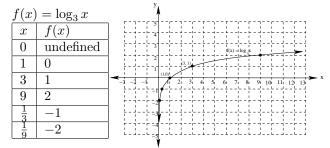
Warning!! Since $\log_b x$ is only defined for x > 0, we will need to check for extraneous solutions. Any value that makes the expression inside a logarithm negative is not a valid solution.

Examples:

(a) Suppose $\log_5 x = 3$. Find x. Since $\log_5 x = 3$, $x = 5^3 = 125$. (b) Suppose $\log_z 16 = 2$. Find z. Since $\log_z 16 = 2$, $z^2 = 16$, so $z = \pm 4$. But since we know that z > 0, then z = 4. (c) $\log_4(3x + 1) = \log_4(2x + 4)$ Since $\log_4 x$ is one-to-one, we know 3x + 1 = 2x + 4Therefore, x = 3. (d) $\log_7(x^2 + 8x) = \log_7(10x + 8)$

Notation: If b = 10, we abbreviate $\log_{10} x$ as $\log x$. Similarly, if b = e, we abbreviate $\log_e x$ as $\ln x$.

Graphs of logarithmic functions:



- 1. Domain: $(0, \infty)$
- 2. Range: $(-\infty, \infty)$

- $f(x) = \log_{\frac{1}{3}} x$ $x \quad f(x)$ 0 undefined $1 \quad 0$ $\frac{1}{3} \quad 1$ $\frac{1}{9} \quad 2$ $3 \quad -1$ $9 \quad -2$
 - 3. y-intercept: none. x intercept (1,0)
 - 4. Increasing if b > 1. Decreasing if 0 < b < 1.

Examples: Finding doubling times using logarithms. (a)