Curve Sketching Example

Let $f(t) = \frac{t^2}{t^2 - 1}$. Before we even begin, we should notice that f(t) is not defined for $t = \pm 1$.

A. Find the intercepts.

y-intercept:
$$f(0) = \frac{0^2}{0^2 - 1} = \frac{0}{-1} = 0$$

x-intercepts: For a fraction to be zero, its numerator must be zero (and its denominator must be non-zero) Here, if $t^2 = 0$, then t = 0, so there is only one intercept, the point (0,0) which is both an x-intercept and a y-intercept.

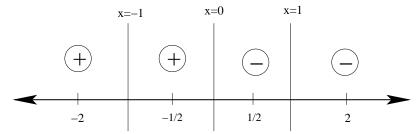
B. Finding Increasing/Decreasing Intervals and Relative Extrema Using f'(t).

$$f'(t) = \frac{2t(t^2 - 1) - t^2(2t)}{(t^2 - 1)^2} = \frac{2t^3 - 2t - 2t^3}{(t^2 - 1)^2} = \frac{-2t}{(t^2 - 1)^2}$$

Critical numbers:

Notice that f'(t) is undefined when $t^2 - 1 = 0$ or when $t = \pm 1$. Also notice that f'(t) = 0 when t = 0.

Analyze the sign of f'(t):



Therefore, f(x) is increasing on the intervals: $(-\infty, -1) \cup (-1, 0)$ Similarly, f(x) is decreasing on the intervals: $(0, 1) \cup (1, \infty)$

Classify Local Extrema:

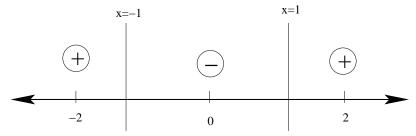
Notice that f(0) is defined, and f'(t) goes from positive to negative at t = 0, so there is a local maximum when t = 0. The value of this maximum is f(0) = 0, so the local maximum occurs at the point (0,0). This is the only local extremum.

C. Find Concavity and Inflection Points Using f''(t).

$$f''(t) = \frac{-2(t^2-1)^2 - (-2t)(2)(t^2-1)(2t)}{(t^2-1)^4} = \frac{(t^2-1)[-2(t^2-1) + (2t)(2)(2t)]}{(t^2-1)^4} = \frac{(t^2-1)[-2t^2 + 2 + 8t^2]}{(t^2-1)^4} = \frac{(t^2-1)(6t^2+2)}{(t^2-1)^4} = \frac{(6t^2-1)(2t^2+2)(2t^2+2)}{(t^2-1)^4} = \frac{(6t^2-1)(2t^2+2)(2t^2+2)}{(t^2-1)^4} = \frac{(6t^2-1)(2t^2+2)(2t^2+2)(2t^2+2)}{(t^2-1)^4} = \frac{(6t^2-1)(2t^2+2)(2t^2+2)}{(t^2-1)^4} = \frac{(6t^2-1)(2t^2+2)}{(t^2-1)^4} = \frac{(6t^2-1)(2t^2+2)}{(t^2-1)^4$$

To find the key values for the second derivative, notice that f''(t) is undefined when $t = \pm 1$ and that f''(t) is textitnever zero.

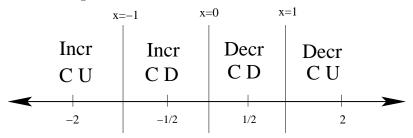
Sign testing diagram for f''(t):



Therefore f(x) is concave up on the intervals $(-\infty, -1) \cup (1, \infty)$ and concave down on the interval (-1, 1).

Notice that there are no inflection points, since the function is undefined at $t = \pm 1$, and these are the only places where f(t) changes concavity.

Combined Sign Chart:



D. Finding Asymptotes to the graph of f(t):

Horizontal asymptotes:

Notice that
$$\lim_{x\to\infty}\frac{t^2}{t^2-1}=1$$
, so $f(t)$ has horizontal asymptote $y=1$.

Vertical asymptotes:

Notice that
$$\lim_{x \to -1^-} \frac{t^2}{t^2 - 1} = \infty$$
, $\lim_{x \to -1^+} \frac{t^2}{t^2 - 1} = -\infty$, $\lim_{x \to 1^-} \frac{t^2}{t^2 - 1} = -\infty$, and $\lim_{x \to 1^+} \frac{t^2}{t^2 - 1} = \infty$

Therefore, f(t) has vertical asymptotes t = -1 and t = 1.

E. Combining All this Information to Sketch the graph of f(t):

