Implicit Differentiation

Show all work for credit. Also, give exact answers unless otherwise noted.

1. Assume that each equation determines a differentiable function f such that y=f(x), find f'(x).

(a)
$$y^2 + x^2 = 2x + 3y^2$$
 (b) $2xy = x^2 - \sqrt{y}$

2. Assume that each equation determines a differentiable function f such that y = f(x), find f'(x). (a) $x \sin y + y \sin x = 1$ (b) $x^2(x-y)^2 = x^2 - y^2$

3. Find an equation of the tangent line to the 4. Assume $t^2v^3 = 1$ determines a function v = f(t), graph of $(x^2 + y^2)^2 = 50xy$ at the point (2, 4). use implicit differentiation to show that $v'' = \frac{10}{9}v^4$.

- 5. Assume that a rectangle has side lengths *a* and *b*.
 - a. Find a formula for the area *A* of the rectangle in terms of *a* and *b*.
 - b. Assume that *a* and *b* are changing over a period of time, and that $a(t) = t^2 + t$ and $b(t) = t^3 t$ after *t* seconds. Find a function A(t) that gives the area of the rectangle at time *t*.

c. Use the formula from part b to find $\frac{dA}{dt}$.

d. Now, use implicit differentiation on your formula from part a to find $\frac{dA}{dt}$. Compare your answer with what you found in part c.