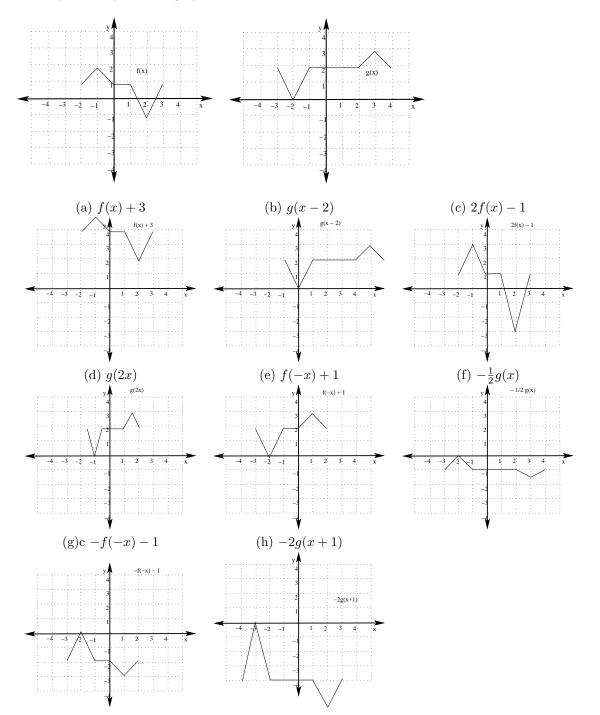
- 1. True or False:
 - (a) Any two distinct points in the plane determine exactly one line. True. This is a fairly familiar fact from Geometry.
 - (b) Any line can be written in the form y = mx + b. False. This is a bit tricky, but vertical lines cannot be put into the from y = mx + b.
 - (c) The graph of any circle is symmetric with respect to the origin.False. Only circles centered at the origin are symmetric with respect to the origin.
 - (d) If a graph has two points with the same y-coordinate, then it is not the graph of a function y = f(x). False. A repeated y coordinate is not a problem. Repeated x-coordinates are what we are worried about. For example, $f(x) = x^2$ has lots of repeated y coordinates (f(x) = 5 has even more).
 - (e) Every function y = f(x) has at least one x-intercept. False. Many functions do not have an x-intercept. For example, f(x) = 5 and $f(x) = x^2 + 1$ do not have any x-intercepts.
- 2. Given the points A(2, -2) and B(-1, 4):
 - (a) Find d(A, B)

$$d(A,B) = \sqrt{(2-(-1))^2 + (-2-4)^2} = \sqrt{3^2 + (-6)^2} = \sqrt{9+36} = \sqrt{45} = 3\sqrt{5}.$$

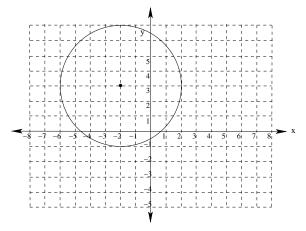
- (b) Find the midpoint of the line segment containing A and B. $M = \left(\frac{2-1}{2}, \frac{-2+4}{2}\right) = \left(\frac{1}{2}, \frac{2}{2}\right) = \left(\frac{1}{2}, 1\right)$
- (c) Find the equation for the line containing A and B in general form. $m = \frac{4-(-2)}{-1-2} = \frac{6}{-3} = -2$, so, using the point/slope equation: y + 2 = -2(x - 2) = -2x + 4Thus the line has equation y = -2x + 2.
- (d) Find the equation for the circle centered at B containing the point A. From part (a) above, r = 3√5 and C = (-1,4). Therefore, the circle has equation (x + 1)² + (y 4)² = 45
- (e) Find an equation for the vertical line containing B. x = -1
- (f) Find an equation for the horizontal line containing A. y = -2
- 3. Find the equation for each line described below. Put your final answer in slope/intercept form.
 - (a) The line with slope 4 and y-intercept -7 y = 4x 7
 - (b) The line containing the points (-4, 1) and (3, -7)First, we find the slope of this line: $m = \frac{1 - (-7)}{-4 - 3} = -\frac{8}{7}$ Then, we use the point/slope formula: $y - 1 = -\frac{8}{7}(x + 4)$ or $y = -\frac{8}{7}x - \frac{32}{7} + 1$ Thus $y = -\frac{8}{7}x - \frac{25}{7}$
 - (c) The line parallel to the line 3x 4y = 12 passing through the point (1,3)Putting this line into slope intercept form, we have: 4y = 3x - 12, or $y = \frac{3}{4}x - 3$ Then, since we are looking for a parallel line, we need a line with slope $m = \frac{3}{4}$ passing through (1,3). Then, using the point/slope formula: $y - 3 = \frac{3}{4}(x - 1)$ or $y = \frac{3}{4}x - \frac{3}{4} + 3$ Thus $y = \frac{3}{4}x + \frac{9}{4}$
 - (d) The line perpendicular to the line 5y 2x = 3 and having x-intercept -1. Putting this line into slope intercept form, we have: 5y = 2x + 3, or y = ²/₅x + ³/₅ Then, since we are looking for a perpendicular line, we need a line with slope m = -⁵/₂ passing through (-1,0), since the x-intercept is -1. Then, using the point/slope formula: y - 0 = -⁵/₂(x + 1) or y = -⁵/₂x - ⁵/₂

- 4. A 16oz jar of peanut butter cost \$1.78 in 1995. In 2005, a similar jar cost \$2.99.
 - (a) Find a line that models the price of peanut butter over time (hint: you can take x = 0 to represent 1995) Using the points (0, 1.78) and (10, 2.99), we find $m = \frac{2.99-1.78}{10-0} = .121$ and b = 1.78. Therefore, the line modeling the price of peanut butter is given by: y = .121x + 1.78, where x = 0 corresponds to the year 1995.
 - (b) Use your model to predict the price of peanut butter in 2010. 2010 corresponds to x = 2010 - 1995 = 15, and so y = .121(15) + 1.78 = \$3.595, or around \$3.60.
 - (c) According to your model, when will the price of peanut butter reach \$5.00 for a 16oz jar? If y = \$5.00, then 5 = .121x + 1.78, so 5 - 1.78 = .121x, or 3.22 = .121x Therefore, x = 3.22/.121 = 26.61. Hence, according to this model, the price of peanut butter will reach \$5 per 16 oz jar 26.61 years after 1995, or sometime during 2022.
- 5. Given the graphs of f(x) and g(x) shown below, use graph transformations to graph each of the following. Label at least 3 points in your final graph.



- 6. Find the equation for the following circles:
 - (a) The circle with center (4, -5) and radius 6 The circle has equation $(x - 4)^2 + (y + 5)^2 = 36$
 - (b) The circle with diameter passing through the points (2, -2) and (-4, -2)Notice that the distance between these point is: $d(A, B) = \sqrt{(2 - (-4))^2 + (-2 - (-2))^2} = \sqrt{6^2 + 0^2} = \sqrt{36} = 6$. Thus the radius is *half* this distance, or r = 3 and the center of the circle if the midpoint of the line segment between these points, $C = \left(\frac{2+(-4)}{2}, \frac{-2+-2}{2}\right) = (-1, -2)$. Therefore, the circle has equation $(x + 1)^2 + (y + 2)^2 = 9$
 - (c) The circle with center (2, 1) and passing through the point (5, 5) Notice that the distance between these point is: $d(A, B) = \sqrt{(5-2)^2 + (5-1)^2} = \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5$. Therefore, r = 5 and C = (2, 1), so the circle has equation $(x - 2)^2 + (y - 1)^2 = 25$
- 7. Graph the circle with equation $x^2 + y^2 + 4x 6y 3 = 0$
- 8. Graph the circle with equation $x^2 + y^2 + 4x 6y 3 = 0$ Rearranging the terms and completing the square: $x^2 + 4x + y^2 - 6y + = 3$ Therefore, $x^2 + 4x + 4 + y^2 - 6y + 9 = 3 + 4 + 9$, or $(x + 2)^2 + (y - 3)^2 = 16$ Thus this single has center (-2, 2) and no line y = 4, so the graph of the single in

Thus this circle has center (-2, 3) and radius r = 4, so the graph of the circle is:



- 9. Find the domain of the following functions (put your answers in interval notation):
 - (a) $f(x) = \frac{x^2 + x 2}{x^2 4}$

We need to avoid making the denominator zero, so we can't have $x^2 - 4 = 0$ or $x^2 = 4$. Therefore, $x \neq \pm 2$.

Therefore, in interval notation, the domain of f is: $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$.

(b) $f(x) = \frac{\sqrt{4-2x}}{x^2-1}$

There are two things to worry about. First, we need the denominator to be non-zero. That is, we can't have $x^2 - 1 = 0$ or $x^2 = 1$.

Therefore, $x \neq \pm 1$.

Next, we can't take the square root of a negative number, so we need $4 - 2x \ge 0$.

That is, $4 \ge 2x$, or $2 \ge x$. Combining these, the domain of f is:

 $(-\infty, -1) \cup (-1, 1) \cup (1, 2]$

(c) $f(x) = \frac{4}{\sqrt{3x-5}}$

Here, we need 3x - 5 > 0, or 3x > 5. Thus $x > \frac{5}{3}$. Therefore, the domain is: $(\frac{5}{3}, \infty)$

(d) $f(x) = \frac{\sqrt{3-2x}}{2x^2+x-15}$

There are two things to worry about. First, we need the denominator to be non-zero. That is, we can't have $2x^2 + x - 15 = 0$ or (2x - 5)(x + 3) = 0. Therefore, $x \neq \frac{5}{2}$ or $x \neq -3$.

Next, we can't take the square root of a negative number, so we need $3 - 2x \ge 0$. That is, $3 \ge 2x$, or $\frac{3}{2} \ge x$. Combining these, the domain of f is: $(-\infty, -3) \cup (-3, \frac{3}{2}]$ 10. Given that $f(x) = \sqrt{2x-2}$ and $g(x) = \frac{4}{3x-2}$

- (a) Find $\frac{g}{f}(3)$ $f(3) = \sqrt{2(3) - 2} = \sqrt{4} = 2$ $g(3) = \frac{4}{3(3)-2} = \frac{4}{7}$ $\frac{g}{f}(3) = \frac{g(3)}{f(3)} = \frac{\frac{4}{7}}{2} = \frac{4}{7} \cdot \frac{1}{2} = \frac{2}{7}$ (b) Find $f \circ g(2)$ $g(2) = \frac{4}{3(2)-2} = \frac{4}{4} = 1$ $f \circ g(2) = f(g(2)) = f(1) = \sqrt{2(1) - 2} = \sqrt{0} = 0$
- 11. Given that $f(x) = \sqrt{3x-2}$ and $q(x) = x^2 4$
 - (a) Find $g \circ f(x)$ $g \circ f(x) = g(f(x)) = (\sqrt{3x-2})^2 - 4 = 3x - 2 - 4 = 3x - 6 = 3(x-2)$ (b) Find $f \circ q(x)$
 - $f \circ g(x) = f(g(x)) = \sqrt{3(x^2 4) 2} = \sqrt{3x^2 12 2} = \sqrt{3x^2 14}$
 - (c) Find the domain of $g \circ f(x)$. Give your answer in interval notation. To find the domain of $g \circ f(x) = g(f(x))$, we first find the domain of f: $3x - 2 \ge 0$, so $3x \ge 2$ or $x \ge \frac{2}{3}$. Next, notice that g is never undefined. Therefore, the domain of $g \circ f(x)$ is $\left[\frac{2}{3}, \infty\right)$
 - (d) Find the domain of $\frac{f}{a}$. Give your answer in interval notation. To be in the domain of $\frac{f}{a}$, we need f(x) to be defined, and g(x) to be defined and non-zero. Therefore, we need $3x - 2 \ge 0$, or $3x \ge 2$, hence $x \ne \frac{2}{3}$. We also need $x^2 - 4 \neq 0$, or $x \neq \pm 2$ Hence the domain of $\frac{f}{a}$ is $\left[\frac{2}{3},2\right) \cup (2,\infty)$
- 12. An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface in the shape of a circle. At any time t, in minutes, after the beginning of the leak, the radius of the circular oil slick on the surface is r(t) = 4t feet. Let $A(r) = \pi r^2$ represent the area of the circle of radius r.
 - (a) Find $(A \circ r)(t)$ Since r(t) = 4t and $A(r) = \pi r^2$, $(A \circ r)(t) = \pi (4t)^2 = 16\pi t^2$
 - (b) Explain what $(A \circ r)(t)$ is in practical terms. $(A \circ r)(t)$ gives the area of the oil as a function of time in minutes.

13. Given the tables below, find the following:

	2	x	0	2	4	6	8			
	f(x)	0	5	8	4	0			
		,	$\left(\frac{f}{g}\right)$							
((b)	(f	$\circ g)$	(2) =	= f(g(2))) =	f(6)) = 4	1
	(c)	(g	$\circ g)$	(2) =	= g(g(2)) =	g(6)	= 9	
((d)	f^{-}	$^{1}(5)$	= 2	2					
	(e)	f(g	$g^{-1}($	9))	= f	(6) =	= 4			

х	0	2	4	6	8
g(x)	2	6	5	9	7

- 14. Determine whether or not the following functions are one-to-one. You must justify your answer to each part.
 - (a) f(x) = 3x 5
 Suppose f(a) = f(b). Then 3a 5 = 3b 5. Then, adding 5 to both sides of the equation: 3a = 3b, or, dividing both sides by 3, a = b
 Therefore f(x) is one-to-one.
 - (b) $f(x) = x^3 x$ Notice that if $x^3 - x = 0$, then $x(x^2 - 1) = 0$, or x(x - 1)(x + 1) = 0. Thus x = 0, 1, -1That is, f(0) = f(1) = f(-1) = 0. Hence f(x) is not one-to-one.

(c) f(x) = 3|x| - 2Notice that f(2) = 3|2| - 2 = 6 - 2 = 4, and f(-2) = 3|-2| - 2 = 3(2) - 2 = 4, while $2 \neq -2$. Therefore, f is not one-to-one.

- (d) $g(x) = -\frac{1}{2x}$ Suppose g(a) = g(b). Then $\frac{1}{2a} = \frac{1}{2b}$. But then, multiplying both sides by (2*ab*): $\frac{2ab}{2a} = \frac{2ab}{2b}$, or, reducing, b = a. Therefore g is one-to-one.
- 15. Use algebra to find the inverse of each of the following functions:
 - (a) f(x) = 5x 4

To find the inverse of f, we first solve y = 5x - 4 for x. To do so, we add 4 to both sides: y + 4 = 5x, or, dividing both sides by 5: $\frac{y+4}{5} = x$, or $x = \frac{y}{5} + \frac{4}{5}$. Therefore, $f^{-1}(x) = \frac{x}{5} + \frac{4}{5}$.

(b) $f(x) = \sqrt{x-4}$

To find the inverse of f, we first solve $y = \sqrt{x-4}$ for x.

Squaring both sides, $y^2 = x - 4$, or, adding 4 to both sides, $y^2 + 4 = x$

Thus $f^{-1}(x) = x^2 + 4$. (Note that this inverse function is only valid on the restricted domain $x \ge 0$)

(c) $f(x) = \frac{5x}{3-x}$

To find the inverse of f, we first solve $y = \frac{5x}{3-x}$ for x. First we multiply to clear the denominator, yielding y(3-x) = 5x, or 3y - xy = 5x. Next, we get everything involving x on one side: 3y = 5x + xyThen, we factor out x: 3y = x(5+y), or $\frac{3y}{5+y} = x$ Therefore, exchanging x and y, we have $f^{-1}(x) = \frac{3x}{5+x}$

(d) $f(x) = \frac{2x-3}{3x+4}$

To find the inverse of f, we first solve $y = \frac{2x-3}{3x+4}$ for x. First we multiply to clear the denominator, yielding y(3x+4) = 2x - 3, or 3xy + 4y = 2x - 3. Next, we get everything involving x on one side: 4y + 3 = 2x - 3xyThen, we factor out x and divide: 4y + 3 = x(2 - 3y), or $\frac{4y+3}{2-3y} = x$ Therefore, exchanging x and y, we have $f^{-1}(x) = \frac{4x+3}{2-3x}$