Key Gas Math Summary

STP: Standard Temperature and Pressure

- 0° C (273 K) •
- 1 atmosphere (760 mm Hg)
- 1 mole == 22.4 L for an ideal gas at STP

Several Key Conversion Factors When Dealing with Gases

	Conversion Factors	Interconversion Between:	
1.	1.0atm = 760 mm Hg	Pressure units	
2.	$K = 273 + {}^{o}C$	Temperature units	
3.	x moles = $\frac{\text{actual mass}}{\text{known molar mass}}$	Mass/mole interconversions	

1 mole = 22.4 L at STP4.

mole/volume interconversions at STP

The Ideal Gas Law	$\mathbf{PV} = \mathbf{nRT}$			
Rearranged Versions	$V = \frac{nRT}{P}$	$P = \frac{nRT}{V}$	$n = \frac{PV}{RT}$	$T = \frac{PV}{nR}$

$R = 0.0821 \text{ atm} \cdot L/\text{mol} \cdot K$

Density = g/L

Basic Gas Laws:

$V \propto 1/P$	or	PV = constant	Boyle's Law
$V \propto T$	or	V/T = constant	Charles's Law
$V \propto n$	or	V/n = constant	Avogardro's Law
$V \propto T/P$	or	PV/T = constant	Combined Law