# C's	Name	Formula	Bp (°C)	Structure
1	Methane	CH ₄	-162	Н-(СН ₂)-Н
2	Ethane	C_2H_6	-89	H-(CH ₂) ₂ -H
3	Propane	C_3H_8	-42	H-(CH ₂) ₃ -H
4	Butane	C_4H_{10}	0	H-(CH ₂) ₄ -H
5	Pentane	$C_{5}H_{12}$	36	H-(CH ₂) ₅ -H
6	Hexane	$C_{6}H_{14}$	69	H-(CH ₂) ₆ -H
7	Heptane	$C_{7}H_{16}$	98	H-(CH ₂) ₇ -H
8	Octane	$C_{8}H_{18}$	126	H-(CH ₂) ₈ -H
9	Nonane	$C_{9}H_{20}$	151	H-(CH ₂) ₉ -H
10	Octane	$C_{10}H_{22}$	174	H-(CH ₂) ₁₀ -H

ALKANE NAMES, Formulas, Properties (Memorize) (Sections 3.2,4)

Notes: (Including some alkane properties, Section 3.5)

- 1. Memorize names
- 2. Names all end in "ane"
- 3. From 5 up, come from Greek
- 4. Boiling points: more C's \rightarrow high boiling point (London force)
- 5. Formula: for acyclic alkanes $\rightarrow C_{\rm N}H_{2\rm N+2}$
 - Basically 2H per carbon (2N), plus 2 extra H's at the ends (+2)
 - Branched isomers for acyclic alkanes still have C_NH_{2N+2}
- 6. <u>Cyclic Alkanes</u>: names start in "cyclo" (cyclopentane, cyclooctane, etc.)
- 7. Formula for <u>cvclic alkanes \rightarrow C_NH_{2N}</u>
 - Basically 2H per carbon (2N), but without the extra two H's at the ends
 - Cyclic alkanes with side-chains still have C_NH_{2N}
- 8. Solubility: nonpolar
 - \rightarrow insoluble in water
 - \rightarrow soluble in nonpolar, hydrophobic solvents
- 9. Density: < 1 (less than water)
 - \rightarrow float on top of water

<u>Industrial Alkanes</u> (5.5)					
Name	# C's	Boiling Range	Use		
Natural Gas	C ₁ -C ₃	Gas	Fuel		
	(70% methane)				
"Petroleum Gas"	C_2-C_4	<30°	Heating, Gas		
Propane	C ₃	-42°	Propane tanks,		
			camping, etc.		
Gasoline	C ₄ -C ₉	30-180°	Car fuel		
Kerosene	C_8-C_{16}	160-230°	Jet fuel		
Diesel	C_{10} - C_{18}	200-320°	Truck fuel		
Heavy Oils	C_{16} - C_{30}	300-450°			
Motor Oils		High temp			
Paraffin		Vacuum			
Asphalt		Never Distills			
Coke		Never Distills			

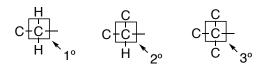
Industrial Alkanes (3.5)

Nomenclature of Alkanes (Sections 3.3-4)

Systematic IUPAC Rules for Branched and Substituted Alkanes

- 1. Longest continuous C-chain \rightarrow "core name"
- 2. Number core chain from an end nearest a substituent
- 3. Name substituents as "alk<u>yl</u>" groups:
- 4. Specify the location of substituents using numbers (hyphenate the #'s)
 - If >2 substituents, list alphabetically
 - Use di-, tri-, tetra- if the same substituent is repeated. (But ignore these in alphabetizing).

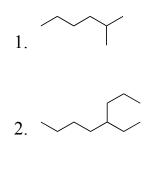
Punctuation Notes:

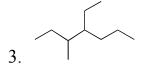

- Hyphenate numbers
- Do not put a space between substituents and the core name

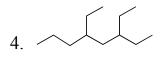
H₃C CH_3 CH-H₃C-C-Memorize H₃C ĊH₂ Isopropyl t-butyl or tert-butyl CH₃ H_2 C_CH H₃C H₃C CH₃ Others H_{2} s-butyl n-propyl isobutyl n-butyl (n for "normal")

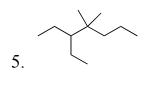
Special Names for Some 3 or 4-carbon Substituents

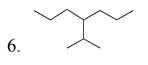
Another Classification System

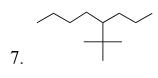

Primary (1°): with one attached carbon Secondary (2°): with two attached carbons Tertiary (3°): with three attached carbons

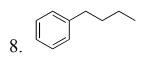


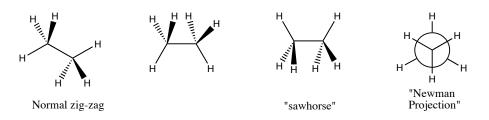

Very Complex Substituents (Not responsible)

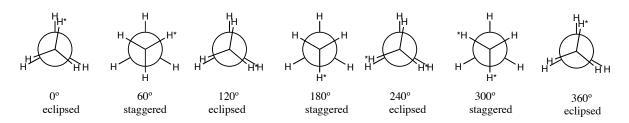

Substituent: (1-ethyl-2,3-dimethylpentyl) Overall: 9-(1-ethyl-2,3-dimethylpentyl)nonadecane


Nomenclature Example Problems





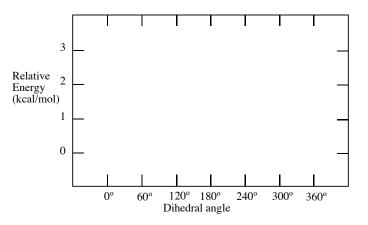


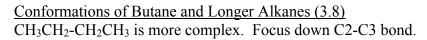

Structure, Conformations of Acyclic Alkanes (3.7)

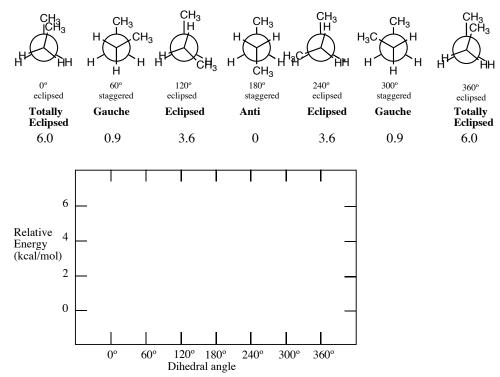
A. "Conformations" = "Conformers" = "Rotamers" = different 3-D arrangements resulting from rotation around a single bond

B. "Newman Projections": look straight down one C-C bond

- If both bonded carbons are tetrahedral, there will be three bonds extending from the front carbon, and three more bonds extending from the back carbon
- Terms:
 - **<u>Dihedral angle</u>**: angle between a bond on the front atom relative to a bond on the back atom
 - Eclipsed: when bonds are aligned. 0°, 120°, 240°, 360° dihedral angles
 - **Staggered**: when bonds are as far apart as possible: 60°, 180°, 300°
 - Skew: anything else in between the eclipsed and staggered extremes




Energy: Staggered best, eclipsed worst


• Why: <u>Torsional strain</u>. **Repulsion between bonding electron pairs** is reduced in the staggered conformation, and is worst in the eclipsed conformation.

<u>Rotation Barrier</u>: energy gap between the best and worst conformation when you go through a full 360° rotation (as would take place in a full bond rotation)

• Draw in Entergy diagram:

Questions

- 1. Draw the energy diagram
- 2. What would be the rotation barrier?

Strain Energy Factors:

- 1. <u>**Torsional**</u> strain (why all of the eclipsed type conformations are worse). Repulsion between bonded electrons
- 2. <u>Steric</u> strain: When atoms themselves get too close. Atom-atom repulsion.
- 3. <u>Angle</u> strain: When bond angles can't achieve ideal VSEPR angles. (No angle strain in ethane or butane)

Total Strain =	Torsional strain (are any bonds eclipsed?)	
	+ Steric strain (are any atoms too close)	
	+ Angle strain (are any bond angles forced to be other than ideal?)	

Questions

- 1. In general, why are staggered better than eclipsed?
- 2. Why is eclipsed better than totally eclipsed?
- 3. Why is anti better than gauche?
- 4. Why is gauche better than eclipsed?
- 5. Why is anti better than totally eclipsed?

Summary

- 1. Anti < gauche < eclipsed < totally eclipsed
- 2. Steric and torsional reasons
- 3. The bulkier a substituent, the greater the steric strain in eclipsed and totally eclipsed conformations

Skills. Be Able to:

- 1. predict relative rotation barriers
- 2. write a conformational analysis (rotation/energy diagram)
- 3. draw Newman pictures for any bond in any structure
- 4. identify anti/gauche/eclipsed/totally eclipsed conformations

Steps to Drawing Newman Structure:

- 1. Draw a circle (back carbon) with a dot in the middle
- 2. Add three sticks extending from the periphery of the circle, with one of them straight up
- 3. Add three sticks extending from the center dot (front carbon) to illustrate the bonds radiating from the front carbon

$$\bigcirc \longrightarrow H^{\operatorname{CH_3}}_{\operatorname{H}} \longrightarrow H^{\operatorname{CH_3}}_{\operatorname{H}} \xrightarrow{\operatorname{CH_3}}_{\operatorname{H}} \xrightarrow{\operatorname{CH_3}}_{\operatorname{H}}$$

Problems

1. Rank the rotation barriers for the following, relative to the indicated bonds

 CH_3-CH_3 \uparrow \uparrow \uparrow

Draw Newman projections for the best and worst conformations of the structure shown, relative to the indicated bond. Use the 3rd carbon in the back.

Chem 350 Jasperse Ch. 3 Notes

<u>Higher Alkanes</u> -for any alkane, anti conformations best = zig-zag layout

<u>3.10 Cycloalkanes</u> Nomenclature: cyclopropane, cyclobutane, etc..

General formula: C_NH_{2N} -this is also true for cycloalkanes with chain(s) attached

3.11 Substituted Cycloalkanes and cis/trans Isomers in Disubstituted Cycloalkanes Nomenclature:

- Monosubstituted: alkylcycloalkane
- Disubstituted: cis- (or trans-)-x-alkyl-y-alkylcycloalkane
 - 1. "Cis"-same side "trans" opposite sides
 - 2. Number ring so as to minimize numbers

	Total Ring	Strain	Main
	Strain	Per	Source
Ring Size	(kcal/mol)	CH_2	Of Strain
3	28	9	Angle Strain
4	26	7	Angle Strain
5	7	1	Torsional Strain (eclipsing)
6	0	0	STRAIN FREE
7	6	1	Torsional Strain (eclipsing)

Torsional Strain (eclipsing)

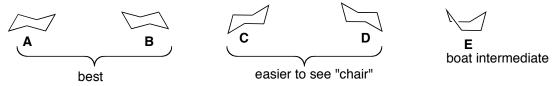
1

3.12 Ring Stability and Ring Strain (Section 4.4-8)

8

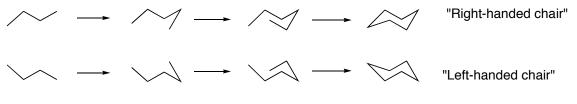
10

Structural Isomer Problems (3.2, 3.10)

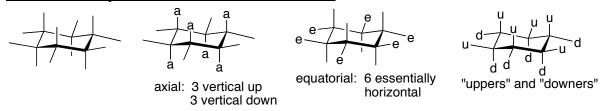

- <u>Check formula first</u>. Is it an acyclic molecule (C_NH_{2N+2}) , or not? $(C_NH_{2N}$ could be a cyclic alkane, or perhaps an alkene ...)
- **<u>Be systematic</u>**. Try the longest possible chain (or largest ring size) first, then systematically shorten it and find the branched isomers.
- Avoid duplicates!
- Beware of things that look different but are really the same thing.
- 1. Draw all structural isomers of C₇H₁₆. (Be systematic; no duplicates!)

2. Draw all structural isomers of C₇H₁₄. (Be systematic; no duplicates!)

3.13 Cyclohexane Chair Conformations

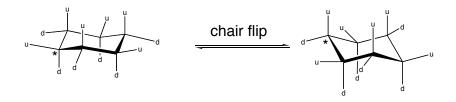

- Cyclohexane has no angle strain or torsional strain
- Cyclohexane has perfect 109° angles with staggered, non-eclipsed C-C bonds
- Obviously it is not flat (natural angle for a flat cyclohexane would be 120°)

Chair Conformations:


- Chairs A and B are constantly interconverting via "boat" E
- A and **B** are best to draw and work with.
- But C/D make it easier to visualize why it's called a "chair": 4 carbons make the seat of the chair, one makes backrest, one a footrest.

Process for Drawing Both Chairs:

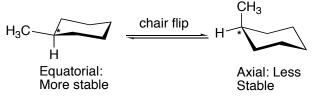
- 1. Draw a 4-carbon zig-zag. It helps if your left-most carbon is a little lower than your 3rd carbon
- 2. Add a 5th carbon and 6th carbon, but don't have them exactly underneath the 2nd and 3rd carbons.
- 3. Connect the 6^{th} carbon to the orginal 1^{st} carbon
 - For a "left-handed chair", start up and zig-zag down.


"Axial" and "Equatorial" Positions for Substituents

- 1. Each carbon has one axial and one equatorial H's
- 2. Always have six axial attachments
- 3. 3 axials up (on alternating carbons)

Chem 350 Jasperse Ch. 3 Notes

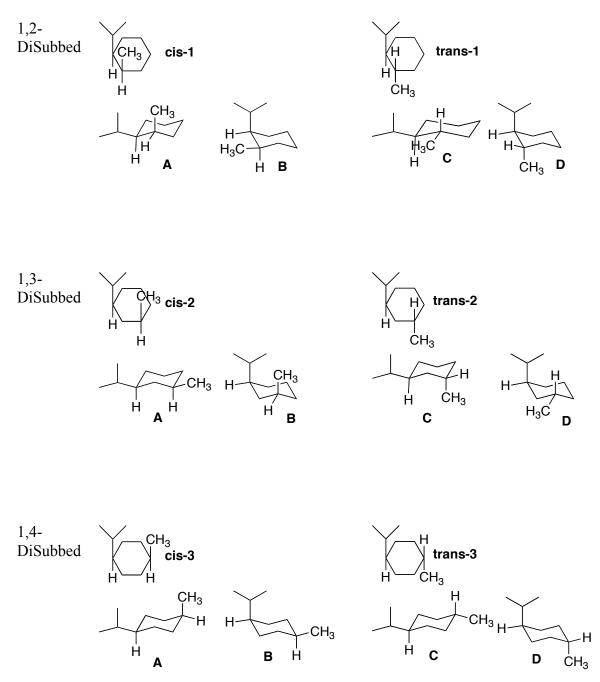
- 4. 3 axials down (on alternating carbons)
- 5. Always have six equatorial attachments
- 6. For processing cis/trans problems, it's helpful to recognize "upper" from "downer" positions
- 7. When a chair flips, what was equatorial becomes axial, and what was axial becomes equatorial



Drawing equatorial and axial bonds:

- Make axial straight up or straight down (3 each)
- Make equatorial bond lines almost exactly horizontal
- Equatorials are easiest to draw on left and right-most carbons

Drawing Mono- and DiSubstituted Cyclohexanes (Sections 3-14,15)


• Always attach the first substituent onto the leftmost carbon (easiest to draw)

- Draw in the H on any substituted carbon, but skip on H-only carbons
- Equatorial is better than axial for steric reasons. In the axial configuration, the substituent has destabilizing steric interactions
 - 2 extra gauche interactions, and 1,3-diaxial interactions
- For disubstituted chairs, let the cis/trans relationship guide whether the second substituent should be in an "upper" or "lower" position relative to the original substituent.
- If one substituent is bigger than the other, the most stable chair will always have the larger substituent equatorial

Questions:

- 1. Draw both chair forms for cis-2-methyl-1-isopropylcyclohexane.
- 2. Which is the best chair for cis-2-methyl-1-isopropylcyclohexane?
- 3. Draw both chair forms and identify the best chair for trans-2-methyl-1isopropylcyclohexane.
- 4. Which is more stable, cis- or trans-2-methyl-1-isopropylcyclohexane?
- 5. Then answer the same questions for the 1,3- and 1,4- isomers.

