

5 5 ▼

Ch. 7 Structure and Synthesis of Alkenes

712 D ..:

1.1,2 Review		
Bond Strength		
C-C σ Bond	83 kcal/mol	
C=C π Bond	63 kcal/mol	
 π Bonds are mu 	ich weaker	
 π Bonds are thu 	is more breakable and more reactive	(12)-10
Double Bonds can't ro	tate (10+2)-12=	=0 (-H)
7.3 Elements of Unsaturation	("EU")	
Anche "Saturated Alkane": CN	H_{2N+2}	GH
• Unsaturated Formula: Ha	as less than the maximum $2N+2$ number	of hydrogens
1. "Element of Unsaturation	": Something that reduces the hydroge	en count by two
a. Double bond		
b. Ring		
		CSHID
2. Each element of unsaturati	on reduces the h <mark>ydrogen count by tw</mark> o	
3. A molecule may well have	e several elements of unsaturation, each	one progressively reducing
it s hydrogen count by two).	
A Knowing how many eleme	ents of unsaturation are present helps to	classify and helps in
isomer problems	this of unsaturation are present helps to	
		4 H short - 7
5. Calculating EU		
General Concept	Theory # U's Actual # U's	D) short I FII
	EU =	======
	2	<i>•</i>
For Formulas With Nothing		$\mathbf{C} = \# \mathbf{C}$'s
Other than C, H, or O	$EU = \frac{(2C+2) - H}{2C+2}$	H = # H's
	2	N = # N's
		X - # halogens
For Formulas That May		
Include Attrogen of Halogens	$EU = \frac{(2C + 2 + N) - (N + X)}{2}$	
	2	
6. <u>Heteroatom Effect</u>		
• Oxygens: No effect		
Nitrogen: each nitrogen	en increases the theory # H's by 1	
 Halogen: each haloger 	n takes the place of a hydrogen and redu	ices the theory # H's by 1.

5 5 1 5

Calculate how many elements of unsaturation are in the following formulas:

2.
$$C_{SH_{12}}$$

Theory: $(S_{X}2)+2 = 12$ $Eu = \frac{1}{2} - \frac{1}{2} = 9 = 0$
3. $C_{4H_{S}}$
4. $C_{3H_{4}0}$
5. $C_{SH_{9}C1}$
5. $C_{SH_{9}C1}$
6. $C_{4H_{11}N}$
6. $C_{4H_{11}N}$
7. $Eu = 2H_{Short} = \sqrt{2EU}$
7. Thus you can count how many of your EU's arc rings versus double bonds
6. $Note: 2H's add per-double bonds by adding H_{3} across sections.$
7. Thus you can count how many of your EU's arc rings versus double bonds
6. Note: 2H's add per-double bond
7. Thus you can count how many of your EU's arc rings versus double bonds
6. Note: 2H's add per-double bond
7. For C_{4H_5}, draw all possible structures for isomer A and isomer B, given the
all $C_{4H_5}(B)$ $H_{2,PH}$ $C_{4H_{10}}$
7. For C_{4H_5}, draw all possible structure C?
7. $C_{5H_5}(C)$
8. Which of the following is possible for structure C?
 $C_{5H_5}(C)$ $H_{2,PH}$ $C_{6H_{10}}$
8. Which of the following is possible for structure C?
 $C_{5H_5}(C)$ $H_{2,PH}$ $C_{6H_{10}}$
 L_{10H_5} $L_{2}=H_{1}$ L_{10H_5} $L_{2}=H_{1}$ L_{10H_5}
8. Which of the following is possible for structure C?
 $C_{5H_5}(C)$ $H_{2,PH}$ $C_{6H_{10}}$
 L_{10H_5} $L_{2}=H_{1}$ L_{10H_5} $L_{2}=H_{1}$ L_{10H_5} $L_{2}=H_{1}$ L_{10H_5} $L_{2}=H_{1}$ $L_{2}=H_{1}$ L_{10H_5} $L_{2}=H_{1}$ L_{10H_5} $L_{2}=H_{1}$ $L_{2}=H_{2}$ $L_{2}=H_{1}$ $L_{2}=H_{2}$ $L_{2}=H_{2}$

Formulas, EU, and Hydrogenation Test: How to determine the number of alkenes versus rings:

Process

- Q: Suppose a formula is C_7H_{10} , how mapy EU?
- 1. Determine EU from formula
- Given the following H_2/Pt results, how many alkenes and
- Determine alkenes from H2/Pt test

 1 alkene per 2H added
 Determine rings by the difference
 Given the following H2/Pt results, how many alkenes and rings would have been in the original formula?

 Product after # of H's

Determine rings by the difference	Product after	# of H's		
a. $EU = alkenes + rings$, therefore:	H_2/Pt	Added	# of Alkenes	# of Rings
b. rings = $EU - alkenes$	A C_7H_{12}	も		2
	B. C_7H_{14}	+4	2	
	C. C ₇ H ₁₆	+6	3	Ò
	D. C_7H_{10}	Q Q	0	3

7.4,5 Alkene Nomenclature

- A. When the Alkene is in the Core Name (the priority functional group)
- 1. Number the longest continuous alkene-containing C-chain from the end nearest the alkene → core name = "alk-x-ene"
- 2. Designate the position of the alkene by using the lower-numbered of the two alkene carbons
- 3. Attach and number substituents
- 4. When alkene stereoisomer issues apply:
 - Designate stereochemistry as (E) or (Z)

Give formal names for the following alkenes Simple Acyclics

Rings

B. Alkenes as Substitutents

• Many functional groups have higher priority than alkenes, so that alkenes may need to be named as substituents rather than in the core name

Four to Memorize:

Name the following:

2

3

16-10: