Ch. 7 Structure and Synthesis of Alkenes

7.1,2 Review

Bond Strength	
C-C σ Bond	83 kcal/mol
C=C π Bond	63 kcal/mol

- π Bonds are much weaker
- \blacksquare π Bonds are thus more breakable and more reactive

Double Bonds can't rotate

7.3 Elements of Unsaturation ("EU")

- "Saturated Alkane": C_NH_{2N+2}
- Unsaturated Formula: Has less than the maximum 2N+2 number of hydrogens
- 1. "Element of Unsaturation": Something that reduces the hydrogen count by two
 - a. Double bond
 - b. Ring
- 2. Each element of unsaturation reduces the hydrogen count by two
- 3. A molecule may well have several elements of unsaturation, each one progressively reducing it's hydrogen count by two.
- 4. Knowing how many elements of unsaturation are present helps to classify, and helps in isomer problems.

5. <u>Calculating EU</u>

General Concept

$$EU = \frac{\text{Theory # H's - Actual # H's}}{2}$$

For Formulas With Nothing Other than C, H, or O

$$EU = \frac{(2C+2) - H}{2}$$

For Formulas That May Include Nitrogen or Halogens

$$EU = \frac{(2C + 2 + N) - (H + X)}{2}$$

6. Heteroatom Effect:

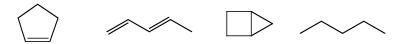
- Oxygens: No effect
- Nitrogen: each nitrogen increases the theory # H's by 1
- Halogen: each halogen takes the place of a hydrogen and reduces the theory # H's by 1.

Calculate how many elements of unsaturation are in the following formulas:

- 2. C₅H₁₂
- 3. C₄H₈
- 4. C3H4O
- 5. C5H9Cl
- 6. C4H11N

Distinguishing Rings from Double Bonds by H₂/Pt Hydrogenation

- a. H₂/Pt will "saturate" **all** C=C double bonds by adding H₂ across each one.
- b. However, rings will not add hydrogen upon treatment with H₂/Pt
- c. Thus you can count how many of your EU's are rings versus double bonds
- d. Note: 2H's add per 1 double bond


7. For C₄H₈ , draw all possible structures for isomer A and isomer B, given the following:

a.
$$C_4H_8$$
 (A) H_2 , Pt C_4H_{10}

b.
$$C_4H_8$$
 (B) H_2 , Pt \rightarrow No reaction

8. Which of the following is possible for structure C?

$$C_5H_8$$
 (C) $\xrightarrow{H_2, Pt} C_5H_{10}$

Formulas, EU, and Hydrogenation Test: How to determine the number of alkenes versus rings:

Process

- 1. Determine EU from formula
- 2. Determine alkenes from H2/Pt test
 - 1 alkene per 2H added
- 3. Determine rings by the difference
 - a. EU = alkenes + rings, therefore:
 - b. rings = EU alkenes

Q: Suppose a formula is C_7H_{10} , how many EU?

Given the following H_2/Pt results, how many alkenes and rings would have been in the original formula?

Product after	# of H's		
H ₂ /Pt	Added	# of Alkenes	# of Rings
A. C ₇ H ₁₂			
B. C ₇ H ₁₄			
C. C ₇ H ₁₆			
D. C ₇ H ₁₀			

7.4,5 Alkene Nomenclature

A. When the Alkene is in the Core Name (the priority functional group)

- 1. Number the longest continuous alkene-containing C-chain from the end nearest the alkene → core name = "alk-x-ene"
- 2. Designate the position of the alkene by using the lower-numbered of the two alkene carbons
- 3. Attach and number substituents
- 4. When alkene stereoisomer issues apply:
 - Designate stereochemistry as (E) or (Z)

Give formal names for the following alkenes Simple Acyclics

Rings

B. Alkenes as Substitutents

• Many functional groups have higher priority than alkenes, so that alkenes may need to be named as substituents rather than in the core name

Four to Memorize:

Name the following: