1. Draw the correct Lewis structure of CH₃CO₂CH₂COCH₃. (Needn’t show 3-D geometry) (3pt)

![Lewis structure](image)

1. Want normal bonding for all
2. C=O (or C=C in other cases) may help
3. If you have any formal charges (not here), they must sum to net charge of molecule (zero, in this case)
4. Organization must match condensed formula sequence

2. Draw a 3-dimensional picture for the atoms in CH₃CH₂CHCH₂NHC₁H₂CHO, using the hash-wedge convention. (You needn’t specify lone pairs, and orbitals need not be shown). (5pt)

![Three-dimensional picture](image)

1. The Nitrogen is tetrahedral, so the N-H hydrogen must either be wedged or hashed. (The lone pair doesn’t need to be drawn in, but it impacts the shape of the nitrogen)
2. Drawing the correct Lewis structure is essential! Do first!

3. For the structure shown, what is the hybridization, electron-pair geometry, and approximate bond angle (90, 109, 120, or 180) relative to: (7pt, 2 points off for each error)

<table>
<thead>
<tr>
<th>Element</th>
<th>Hybridization</th>
<th>Electron-pair geometry</th>
<th>Bond angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>sp³</td>
<td>tetrahedral</td>
<td>109°</td>
</tr>
<tr>
<td>O-2</td>
<td>sp³</td>
<td>tetrahedral</td>
<td>109°</td>
</tr>
<tr>
<td>C-3</td>
<td>sp²</td>
<td>trigonal planar</td>
<td>120°</td>
</tr>
<tr>
<td>C-4</td>
<td>sp²</td>
<td>trig planar</td>
<td>120°</td>
</tr>
<tr>
<td>C-5</td>
<td>sp³</td>
<td>tet</td>
<td>109°</td>
</tr>
<tr>
<td>C-6</td>
<td>sp²</td>
<td>trig</td>
<td>120°</td>
</tr>
</tbody>
</table>

4. Assign any formal charges to any appropriate atoms for the structure shown below. (4pt)

![Formal charges](image)
5. Rank the acidity of the following, from 1 (most) to 4 (least). (4pt)

3 Acidity Factors:
1. charge (not relevant here)
2. Energy
3. Resonance

6. For the following pairs, identify as “isomers” (“I”) or “resonance structures” (“R”). (6pt)

7. Draw arrows to show electron-movement in the following reactions. (These are reactions, not resonance.) (5pt)

Explain change in:
1. Bonds
2. Charge
3. Lone Pairs

8. Rank the series on the basis of boiling point, 1 having highest boiling point, 3 having lowest. (3pt)

2 factors:
1. H-bonding
2. London force (# of carbons)
 - both RAISE BP

9. Rank the series on the basis of water solubility, 1 having highest solubility, 3 having lowest. (3pt)

2 factors:
1. H-bonding (raises solubility)
2. London force (# of carbons)
 - more C's reduces water solubility
10. Circle whichever of the following could fit the formula C₅H₁₀? (3pt)

11. For the following acid-base reaction,
 a. put a box around the weakest base in the reaction
 b. put a circle around the weakest acid
 c. draw an arrow to show whether the equilibrium goes to the right or left. (4pt)

Base Stability factors:
1. charge
2. eneg
3. resonance

1. Equilibrium favors the more stable base
2. More stable base is "weaker" base
3. "Weaker" acid + base on same side

12. Classify the relationship between each pair of molecules as either: (10 pt)
 - same compound
 - structural isomers
 - resonance structures
 - stereo isomers

 1. [Structural]
 2. [Stereo]
 3. [Not same]
 4. [Stereo]
 5. [Structural]
 6. [Same]
14. Give the name for the following. (7pt)

- trans-1-butyl-3-isopropylcyclopentane

- 5-ethyl-3-methyloctane

16. Identify and write down the names for each of the functional groups in each of the following molecules. (Do not include “alkane”, since that isn’t “functional”.) For each molecule, try to write the names in order, as they appear from left-to-right in the molecules. (8pt)

17. Circle which of the following pair will have the larger rotation barrier, relative to the bonds indicated? (2pt) Identify which reason explains why: steric strain, torsional strain, or angle strain?

18. For the following Newman projections: (6pt total)
 a. rank them in stability from 1 to 4, 1 being most stable
 b. identify the “anti”, “gauche”, and the “totally eclipsed” conformations.
 c. Is the energy difference between the gauche and the anti conformation based on steric strain, torsional strain, or angle strain?
 d. In the case of ethane (not shown), staggered conformations are better than eclipsed conformations. Is the difference based on steric strain, torsional strain, or angle strain?

19. Draw both the most stable and the least stable Newman projections for 1-bromopropane, BrCH₂CH₂CH₃, relative to C1-C2 bond. - (3pt)
20. Which of the following are correct Lewis structures, including formal charges, for nitric acid, HNO₃. (3 pts)

21. a. A only
b. B only
c. C only
d. Both A and C
e. All of the above

22. Draw the two chair conformations of cis-1-isopropyl-4-methylcyclohexane. (You don’t have to draw all the hydrogens). (5pt) (Use “iPr” as abbreviation).

23. Draw the best chair conformation of the more stable isomer. Which is more stable, cis- or trans-1-butyl-2-methylcyclohexane? (4pt)

24. Draw any 6 of the 9 possible structural isomers for alkanes with formula C₇H₁₆. When deciding whether to draw cyclic or acyclic alkanes, make sure that you fit the formula! Be careful not to draw the same isomer twice! I will take off points for duplicating! (You can try to show off by getting more than 6, but if you do still be sure you don’t duplicate!) (6pt)

Alkane Acyclic: C₇H₁₆
Alkane Cyclic: C₇H₁₄
Beware of drawing same thing twice!